scholarly journals Fenton process in dispersed systems for industrial wastewater treatment

2019 ◽  
Vol 73 (1) ◽  
pp. 47-62
Author(s):  
Ana Popovic ◽  
Sonja Milicevic ◽  
Vladan Milosevic ◽  
Branislav Ivosevic ◽  
Jelena Carapic ◽  
...  

Industrial wastewater contains recalcitrant organic compounds with a very complex chemical structure, built of molecules with long chains of carbon atoms and attached different functional groups. Chemical or biological treatments used for removal of these compounds are being replaced with more efficient non-commercial wastewater treatments. Advanced oxidation processes overcome limitations of conventional methods regarding formation of by-products during degradation of recalcitrant organic compounds. The Fenton process, or use of the Fenton?s reagent, has became one of the most utilized processes due to simplicity, economy and accessible amounts of ferrous iron and hydrogen-peroxide, which are used in the process. In specific, the Fenton?s reagent is a catalytic-oxidative mixture of these two components. The ferrous iron Fe2+ initiates and catalyzes decomposition of H2O2, resulting in generation of hydroxyl radicals, which are the main radical species in the process able to detoxify several organic pollutants by oxidation. In addition, other mechanisms besides formation of hydroxyl radicals may occur during the Fenton process and participate in degradation of target pollutants. Generally, the treatment efficiency relies upon the physical and chemical properties of target pollutants and the process operating conditions. The main disadvantage of the Fenton process is production of sludge formed by iron hydroxide at certain pH values. An alternative solution for this problem is application of this process in fluidized bed reactors. This paper presents an overview of Fenton and photo-Fenton processes in dispersed systems for removal of different industrial wastewater pollutants. The most important process parameters, required for efficient degradation of recalcitrant organic compounds are also described, such as the catalyst type, pH value, temperature, H2O2 concentration and retention time. Strict control of Fenton process parameters in fluidized bed reactors at desired values can bring these systems to the commercial use.

2020 ◽  
Vol 5 (2) ◽  
pp. 278-288 ◽  
Author(s):  
Riccardo Uglietti ◽  
Mauro Bracconi ◽  
Matteo Maestri

PA and ISAT algorithms are developed to speed-up the CFD–DEM simulations of fluidized reactors. Also, a selection procedure of the most effective algorithm according to the operating conditions is developed, enabling the simulation of lab reactors.


1983 ◽  
Vol 15 (8-9) ◽  
pp. 169-176 ◽  
Author(s):  
John S Jeris

Pilot plant results of anaerobic treatment using granular biological fluidized bed treatment for a number of industrial wastes is presented. Wastes containing from 5,000 to 54,000 mg/ℓ, were treated with 65 to 95 percent COD removal in 0.3 to 4.9 days hydraulic detention time. Organic loadings of 3 to 38 kg COD/m3-day were used. An energy comparison showed anaerobic treatment to produce a positive energy balance compared to an energy need for comparable activated sludge treatment.


Author(s):  
Robert Macias ◽  
Juan Maya ◽  
Farid Chejne ◽  
Carlos Londoño ◽  
Javier De La Cruz

This work proposes a new strategy for the scaling of bubbling fluidized bed reactors. This strategy is based on the bubble size distribution, bubble coalescence phenomenon, and the chemical reactivity, allowing to deduct the dimensionless number Chejne-Macias-Maya that must remain constant at different scales to guarantee the fluidization regime. The proposed strategy is validated from computational simulations carried out at different operating conditions. Additionally, limits for the validity of this scaling strategy were determined, which agrees with those reported in the literature.


1995 ◽  
Vol 31 (1) ◽  
pp. 185-193 ◽  
Author(s):  
Van T. Nguyen ◽  
Wen K. Shieh

Significant amounts of nitrogenous organic compounds found in industrial wastewaters can have major deleterious effects on the environment and public health; therefore, the removal of these compounds has become an essential component in industrial wastewater treatment. In this work the biodegradability of diisopropylamine and monoethylamine - compounds commonly found in petroleum refinery wastewater - was investigated under oxic and anoxic conditions. Biological fluidized bed reactors were employed in the investigation of single-stage carbon oxidation and nitrification with the amines and phenol as the compounds targeted for removal. Complete carbonaceous oxidation was achieved with a 50% nitrification rate. The feasibility of utilizing the amines and phenol as the organic carbon source for denitrification in an anoxic biological fluidized bed process was also examined. Carbon removal under anoxic conditions was greater than 85% at carbon loading rates less than 0.05 mg TOC/mg biomass-day and decreased to 60% at higher loading rates. Over the range of loading rates tested, the average ratio of mg TOC removed to mg NO3−-N utilized was observed to be 1.26.


Author(s):  
Malak Maamar ◽  
Imen Naimi ◽  
Yassine Mkadem ◽  
Nebil Souissi ◽  
Nizar Bellakhal

AbstractIn this study, electrochemical oxidation of Bromothymol blue (BTB) was studied in an aqueous medium (pH = 3) by electro-Fenton process (EFP). This chemical compound belongs to the family of sulfone phthalein, widely used for dyeing in the textile industry. EFP generates in a catalytic way hydroxyl radicals (•OH) which are powerful oxidant species (E


Sign in / Sign up

Export Citation Format

Share Document