CIE Color Specifications Calculated from Reflectance or Transmittance Spectra

Author(s):  
M. Monica Giusti ◽  
Ronald E. Wrolstad ◽  
Daniel E. Smith
1994 ◽  
Vol 92 (2) ◽  
pp. 207-218 ◽  
Author(s):  
T. A. Day ◽  
B. W. Howells ◽  
W. J. Rice

2010 ◽  
Vol 177 ◽  
pp. 201-203
Author(s):  
Jing Chu ◽  
Yu Lin Li ◽  
Bing Xu ◽  
Na Zhang ◽  
Qiang Li

Niobium oxide thin films were successfully synthesized starting from niobate nanosheets. The microstructure of as-prepared nanosheets was observed by TEM. The morphology of niobate thin films was investigated by SEM. The phase structure was determined by XRD. The transmittance spectra of as-obtained niobium oxide thin films were measured, and the optical properties were studied. The influences of different thickness on optical properties were also analyzed. As-prepared niobium thin films were treated by being heated at different temperature. The effects of soaking temperature on the structure and optical properties of niobium oxide thin films were discussed in detail.


2015 ◽  
Vol 27 (4) ◽  
pp. 3281-3291 ◽  
Author(s):  
Mousa M. Abdul-Gader Jafar ◽  
Mahmoud H. Saleh ◽  
Mais Jamil A. Ahmad ◽  
Basim N. Bulos ◽  
Tariq M. Al-Daraghmeh

Author(s):  
И.В. Боднарь ◽  
Б.Т. Чан ◽  
В.Н. Павловский ◽  
И.Е. Свитенков ◽  
Г.П. Яблонский

AbstractMnAgIn_7S_12 single crystals 16 mm in diameter and ~40 mm in length are grown by planar crystallization of the melt. It is shown that the material grown crystallizes with the formation of the cubic spinel structure. From the transmittance spectra recorded in the region of fundamental absorption in the temperature range 10–320 K, the band gap E _ g of the single crystals and its temperature dependence are determined. The dependence has a shape typical of most semiconductor materials: as the temperature is lowered, the band gap E _ g increases. A calculation is carried out, and it is shown that the calculated values are in agreement with the experimental data.


Author(s):  
A. B. Shvartsburg ◽  
M. D. Malinkovich ◽  
A. M. Kislyuk

The non-local dispersion of longitudinal ultrasonic waves is shown to appear in the heterogeneous solids due to continuous spatial distributions of their density and/or elasticity (gradient solids). This dispersion gives rise to the diversity of ultrasonic transmittance spectra, including the broadband total reflectance plateau, total transmission and tunneling spectral ranges. The ultrasonic wave fields in gradient solids, formed by interference of forward and backward travelling waves as well as by evanescent and antievanescent modes are examined in the framework of exactly solvable models of media with continuously distributed density and elasticity. Examples of transmittance spectra for both metal and semiconductor gradient structures are presented, and the generality of concept of artificial non-local dispersion for gradient composite materials is considered. It should also be noted that the wave equation for acoustic waves in gradient media with a constant elasticity modulus and a certain predetermined density distribution reduces to an equation describing the electromagnetic wave propagation in transparent dielectric media. This formal similarity shows that the concept of nonlocal dispersion is common for both optical and acoustic phenomena, which opens the way to the direct use of physical concepts and exact mathematical solutions, developed for gradient optics, to solve the corresponding acoustic problems.


2020 ◽  
Vol 59 (4) ◽  
Author(s):  
Peter Kuznetsov ◽  
Galina Yakushcheva ◽  
Evgeny Savelyev ◽  
Vasiliy Yapaskurt ◽  
Vasiliy Shcherbakov ◽  
...  

Metal organic chemical vapour deposition (MOCVD) technology is adapted for the deposition of thin zinc and bismuth chalcogenides films on the surface of silica optical fibres with short tapered sections. Growth runs were carried out in a special tubular quartz reactor at atmospheric pressure of hydrogen at 425°C temperature using ZnEt2, BiMe3, Et2Te and i-Pro2Se as organometallic precursors. During the deposition of chalcogenides, the transmittance spectra of the fibre were recorded in regular short time intervals. In the transmittance spectra of the fibre with a tapered section coated by ZnSe and ZnTe, lossy mode resonances (LMR) were observed at a diameter of the tapered waist below 30 μm. After the deposition of very thin Bi2Te3 and Bi2Se3 island films on the tapered waist with a diameter about 10 μm optical fibres were built into erbium fibre ring lasers. A pulsed generation mode was achieved in some of lasers due to resonator Q-factor modulation. These results can be applied for the design of LMR fibre sensors and passively Q-switch pulsed fibre lasers.


2018 ◽  
Vol 84 ◽  
pp. 564-571 ◽  
Author(s):  
A.B. Domínguez-Gómez ◽  
R.A. Mauricio-Sánchez ◽  
A. Mendoza-Galván

2020 ◽  
Vol 38 ◽  
pp. 3-9
Author(s):  
Shunji Ozaki ◽  
Yuki Nakahata

Gallium oxide (Ga2O3) nanowires were grown on fused quartz and Si substrates by a vapor transport method of heating gallium metal at 750−1100 °C in a tube of the horizontal furnace. The obtained white colored product has shown to be the Ga2O3 nanowires with average diameters ranging from 30 to 80 nm. The optical transmittance spectra indicated that the bandgap energy of Ga2O3 nanowire increases as the diameter of nanowire decreases.


2002 ◽  
Vol 56 (5) ◽  
pp. 599-604 ◽  
Author(s):  
Young-Ah Woo ◽  
Yoko Terazawa ◽  
Jie Yu Chen ◽  
Chie Iyo ◽  
Fuminori Terada ◽  
...  

A new measurement unit, the MilkSpec-1, has been developed to determine rapidly and nondestructively the content of fat, lactose, and protein in raw milk using near-infrared transmittance spectroscopy. The spectral range over 700 to 1100 nm was used. This unit was designed for general glass test tubes, 12 mm in diameter and 10 mL in volume. Al2O3 with a thickness of 2.5 mm was found to be optimum as a reference for acquiring the milk spectrum for this measurement. The NIR transmittance spectra of milk were acquired from raw milk samples without homogenization. The calibration model was developed and predicted by using a partial least-squares (PLS) algorithm. In order to reduce the scattering effect due to fat globules and casein micelles in NIR transmittance spectra, multiplicative scatter correction (MSC) and/or second derivative treatment were performed. MSC treatment proved to be useful for the development of calibration models for fat and protein. This study resulted in low standard errors of prediction (SEP), with 0.06, 0.10, and 0.10% for fat, lactose, and protein, respectively. It is shown that accurate, rapid, and nondestructive determination of milk composition could be successfully performed by using the MilkSpec-1, presenting the potential use of this method for real-time on-line monitoring in a milking process.


Sign in / Sign up

Export Citation Format

Share Document