Soft Ferromagnetic Microwires with Excellent Inductive Heating Properties for Clinical Hyperthermia Applications

Author(s):  
Rupin Singh ◽  
Javier Alonso ◽  
Jagannath Devkota ◽  
Manh-Huong Phan
1988 ◽  
Vol 49 (C8) ◽  
pp. C8-1907-C8-1908 ◽  
Author(s):  
B. Alessandro ◽  
G. Bertotti ◽  
A. Montorsi

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1229
Author(s):  
Andrii Vovk ◽  
Sergey A. Bunyaev ◽  
Pavel Štrichovanec ◽  
Nikolay R. Vovk ◽  
Bogdan Postolnyi ◽  
...  

Thin polycrystalline Co2FeGe films with composition close to stoichiometry have been fabricated using magnetron co-sputtering technique. Effects of substrate temperature (TS) and post-deposition annealing (Ta) on structure, static and dynamic magnetic properties were systematically studied. It is shown that elevated TS (Ta) promote formation of ordered L21 crystal structure. Variation of TS (Ta) allow modification of magnetic properties in a broad range. Saturation magnetization ~920 emu/cm3 and low magnetization damping parameter α ~ 0.004 were achieved for TS = 573 K. This in combination with soft ferromagnetic properties (coercivity below 6 Oe) makes the films attractive candidates for spin-transfer torque and magnonic devices.


2021 ◽  
Vol 11 (11) ◽  
pp. 4947
Author(s):  
Myung-hwan Lim ◽  
Changhee Lee

To improve recycling quality, it is necessary to develop a demolition technology that can be combined with existing crushing methods that employ large shredding-efficient equipment. The efficient collection of bones in a segmentation dismantling method must be considered according to the procedure. Furthermore, there is a need for the development of partial dismantling technologies that enable efficient remodeling, maintenance, and reinforcement. In this study, we experimentally investigated the temperature-rise characteristics of reinforced concrete through partial rapid heating during high-frequency induced heating. Accordingly, the chemical and physical vulnerability characteristics of the reinforced concrete were verified by studying the thermal conduction on the surface of the rebars and the cracks caused by the thermal expansion pressure of the rebars. Furthermore, we aimed to verify the applicability of the proposed technology by specifying the vulnerability range of the reinforced concrete based on the heating range, as well as the appropriate energy consumption. We investigated the temperature rise and temperature distribution characteristics of the rebar surfaces based on diameter, length, bar placement conditions, heating distance, heating coil location, and output, using reinforced steel of grade SD345. Maximum powers of 5, 6, and 10 kW, and inductive heating were used to achieve satisfactory results.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1319
Author(s):  
Parthiban Ramasamy ◽  
Mihai Stoica ◽  
Gabriel Ababei ◽  
Nicoleta Lupu ◽  
Jürgen Eckert

A new concept of soft ferromagnetic bulk metallic glass (BMG) with self-healing ability is proposed. The specific [Fe36Co36B19.2Si4.8Nb4]100−x(Ga)x (x = 0, 0.5, 1 and1.5) BMGs prepared by copper mold casting were investigated as a function of Ga content. The Ga-containing BMGs still hold soft magnetic properties and exhibit large plastic strain of 1.53% in compression. Local melting during shearing produces molten droplets of several µm size throughout the fracture surface. This concept of local melting during shearing can be utilized to produce BMGs with self-healing ability. The molten regions play a vital role in deflecting shear transformation zones, thereby enhancing the mechanical properties.


2008 ◽  
Vol 75 (4) ◽  
pp. 041013
Author(s):  
Davresh Hasanyan ◽  
Zhanming Qin ◽  
Liviu Librescu

Sign in / Sign up

Export Citation Format

Share Document