Size and Shape Control Synthesis of Iron Oxide–Based Nanoparticles: Current Status and Future Possibility

2017 ◽  
pp. 39-81 ◽  
Author(s):  
Khuram Ali ◽  
Yasir Javed ◽  
Yasir Jamil
2019 ◽  
Author(s):  
Jacob Steven Mohar ◽  
Ekaterina Dolgopolova ◽  
Jennifer Ann Hollingsworth

2008 ◽  
Vol 130 (12) ◽  
pp. 4007-4015 ◽  
Author(s):  
Anusorn Kongkanand ◽  
Kevin Tvrdy ◽  
Kensuke Takechi ◽  
Masaru Kuno ◽  
Prashant V. Kamat

Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 881 ◽  
Author(s):  
Geoffrey Cotin ◽  
Céline Kiefer ◽  
Francis Perton ◽  
Dris Ihiawakrim ◽  
Cristina Blanco-Andujar ◽  
...  

Iron oxide nanoparticles are widely used as a contrast agent in magnetic resonance imaging (MRI), and may be used as therapeutic agent for magnetic hyperthermia if they display in particular high magnetic anisotropy. Considering the effect of nanoparticles shape on anisotropy, a reproducible shape control of nanoparticles is a current synthesis challenge. By investigating reaction parameters, such as the iron precursor structure, its water content, but also the amount of the surfactant (sodium oleate) reported to control the shape, iron oxide nanoparticles with different shape and composition were obtained, in particular, iron oxide nanoplates. The effect of the surfactant coming from precursor was taking into account by using in house iron stearates bearing either two or three stearate chains and the negative effect of water on shape was confirmed by considering these precursors after their dehydration. Iron stearates with three chains in presence of a ratio sodium oleate/oleic acid 1:1 led mainly to nanocubes presenting a core-shell Fe1−xO@Fe3−xO4 composition. Nanocubes with straight faces were only obtained with dehydrated precursors. Meanwhile, iron stearates with two chains led preferentially to the formation of nanoplates with a ratio sodium oleate/oleic acid 4:1. The rarely reported flat shape of the plates was confirmed with 3D transmission electronic microscopy (TEM) tomography. The investigation of the synthesis mechanisms confirmed the major role of chelating ligand and of the heating rate to drive the cubic shape of nanoparticles and showed that the nanoplate formation would depend mainly on the nucleation step and possibly on the presence of a given ratio of oleic acid and chelating ligand (oleate and/or stearate).


Small ◽  
2009 ◽  
Vol 6 (10) ◽  
pp. 1082-1086 ◽  
Author(s):  
Xing Liao ◽  
Adam B. Braunschweig ◽  
Zijian Zheng ◽  
Chad A. Mirkin

Author(s):  
Helena Gavilán ◽  
Maria Eugênia Fortes Brollo ◽  
Lucía Gutiérrez ◽  
Sabino Veintemillas-Verdaguer ◽  
María del Puerto Morales

2020 ◽  
Vol 1 (4) ◽  
pp. 187-193
Author(s):  
Elaheh Gharibshahian

KTiOPO4 nanoparticles are known as the best candidate to utilize for second-harmonic generation in multiphoton microscopes and bio labels. Size and shape are important and effective parameters to control the properties of nanoparticles. In this paper, we will investigate the role of capping agent concentration on the size and shape control of KTP nanoparticles. We synthesized KTP nanoparticles by the co-precipitation method. Polyvinyl alcohol with different mole ratios to titanium ion (1:3, 1:2, 1:1) was used as a capping agent. Products were examined by X-ray diffraction patterns and scanning electron microscopy analyses. X-ray diffraction patterns confirmed the formation of the KTP structure. The biggest (56.36nm) and smallest (39.42nm) grain size were obtained by 1:3 and 1:1 mole ratios of capping agent, respectively. Dumbly, spherical and polyhedral forms of KTP nanoparticles were observed by the change in capping agent mole ratio. The narrowest size distribution of KTiOPO4 nanoparticles was obtained at 1:1 mole ratio of capping agent. Doi: 10.28991/HIJ-2020-01-04-06 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document