scholarly journals Guard Time Optimisation for Energy Efficiency in IEEE 802.15.4-2015 TSCH Links

Author(s):  
Georgios Z. Papadopoulos ◽  
Alexandros Mavromatis ◽  
Xenofon Fafoutis ◽  
Robert Piechocki ◽  
Theo Tryfonas ◽  
...  
2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Deze Zeng ◽  
Song Guo ◽  
Victor Leung ◽  
Jiankun Hu

Wireless personal area networks (WPANs) are getting popular in a variety of fields such as smart home, office automation, and e-healthcare. In WPANs, most devices are considerably energy constrained, so the communication protocol should be energy efficient. The IEEE 802.15.4 is designed as a standard protocol for low power, low data rate, low complexity, and short range connections in WPANs. The standard supports allocating several numbers of collision-free guarantee time slots (GTSs) within a superframe for some time-critical transmissions. Recently, COPE was proposed as a promising network coding architecture to essentially improve the throughput of wireless networks. In this paper, we exploit the network coding technique at coordinators to improve energy efficiency of the WPAN. Some related practical issues, such as GTS allocation and multicast, are also discussed in order to exploit the network coding opportunities efficiently. Since the coding opportunities are mostly exploited, our proposal achieves both higher energy efficiency and throughput performance than the original IEEE 802.15.4.


Author(s):  
Subono . ◽  
M. Udin Harun Al Rasyid ◽  
I Gede Puja Astawa

ZigBee applications of IEEE 802.15.4 Wireless Sensor Network (WSN) with Low Rate Wireless Personal Area Network (LR-WPAN) can be integrated with e-health technology Wireless Body Area Network (WBAN). WBAN are small size and can communicate quickly making it easier for people to obtain information accurately.WBAN has a variety of functions that can help human life. It can be used in the e-health, military and sports. WBAN has the potential to be the future of wireless communication solutions. WBAN use battery as its primary power source. WBAN has limited energy and must be able to save energy consumption in order to operate for a long time. In this study, we propose a method of time scheduling called cycle sleep period (CSP) as WBAN solutions to save energy and improve energy efficiency. The CSP method is implemented in the real hardware testbed using sensor e-health includes temperature body and current sensor. We compared the performance of CSP method with duty cycle management (DCM) time scheduling-based and without using time scheduling.From the measurement results, our proposed idea has decreasingenergy consumption.Keywords: WSN, LR-WPAN, WBAN, e-health, Time Scheduling


Author(s):  
Hayfa Ayadi ◽  
Ahmed Zouinkhi ◽  
Boumedyen Boussaid ◽  
M. Naceur Abdelkrim ◽  
Thierry Val

2011 ◽  
Vol 29 (8) ◽  
pp. 1508-1524 ◽  
Author(s):  
Mario Di Francesco ◽  
Giuseppe Anastasi ◽  
Marco Conti ◽  
Sajal K. Das ◽  
Vincenzo Neri

Sign in / Sign up

Export Citation Format

Share Document