IEEE 802.15.4 as the MAC Protocol for Internet of Things (IoT) Applications for Achieving QoS and Energy Efficiency

Author(s):  
Dushyanta Dutta
Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1971 ◽  
Author(s):  
Sangrez Khan ◽  
Ahmad Naseem Alvi ◽  
Muhammad Awais Javed ◽  
Byeong-hee Roh ◽  
Jehad Ali

Internet of Things (IoT) is a promising technology that uses wireless sensor networks to enable data collection, monitoring, and transmission from the physical devices to the Internet. Due to its potential large scale usage, efficient routing and Medium Access Control (MAC) techniques are vital to meet various application requirements. Most of the IoT applications need low data rate and low powered wireless transmissions and IEEE 802.15.4 standard is mostly used in this regard which offers superframe structure at the MAC layer. However, for IoT applications where nodes have adaptive data traffic, the standard has some limitations such as bandwidth wastage and latency. In this paper, a new superframe structure is proposed that is backward compatible with the existing parameters of the standard. The proposed superframe overcomes limitations of the standard by fine-tuning its superframe structure and squeezing the size of its contention-free slots. Thus, the proposed superframe adjusts its duty cycle according to the traffic requirements and accommodates more nodes in a superframe structure. The analytical results show that our proposed superframe structure has almost 50% less delay, accommodate more nodes and has better link utilization in a superframe as compared to the IEEE 802.15.4 standard.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2330
Author(s):  
Ángeles Verdejo Espinosa ◽  
José Luis Lopez Ruiz ◽  
Francisco Mata Mata ◽  
Macarena Espinilla Estevez

We live in complex times in the health, social, political, and energy spheres, and we must be aware of and implement new trends in intelligent social health systems powered by the Internet of Things (IoT). Sustainable development, energy efficiency, and public health are interrelated parameters that can transform a system or an environment for the benefit of people and the planet. The integration of sensors and smart devices should promote energy efficiency and ensure that sustainable development goals are met. This work is carried out according to a mixed approach, with a literature review and an analysis of the impact of the Sustainable Development Goals on the applications of the Internet of Things and smart systems. In the analysis of results, the following questions are answered about these systems and applications: (a) Are IoT applications key to the improvement of people’s health and the environment? (b) Are there research and case studies implemented in cities or territories that demonstrate the effectiveness of IoT applications and their benefits to public health? (c) What sustainable development indicators and objectives can be assessed in the applications and projects analyzed?


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Michele Luvisotto ◽  
Federico Tramarin ◽  
Lorenzo Vangelista ◽  
Stefano Vitturi

Low-Power Wide-Area Networks (LPWANs) have recently emerged as appealing communication systems in the context of the Internet of Things (IoT). Particularly, they proved effective in typical IoT applications such as environmental monitoring and smart metering. Such networks, however, have a great potential also in the industrial scenario and, hence, in the context of the Industrial Internet of Things (IIoT), which represents a dramatically growing field of application. In this paper we focus on a specific LPWAN, namely, LoRaWAN, and provide an assessment of its performance for typical IIoT employments such as those represented by indoor industrial monitoring applications. In detail, after a general description of LoRaWAN, we discuss how to set some of its parameters in order to achieve the best performance in the considered industrial scenario. Subsequently we present the outcomes of a performance assessment, based on realistic simulations, aimed at evaluating the behavior of LoRaWAN for industrial monitoring applications. Moreover, the paper proposes a comparison with the IEEE 802.15.4 network protocol, which is often adopted in similar application contexts. The obtained results confirm that LoRaWAN can be considered as a strongly viable opportunity, since it is able to provide high reliability and timeliness, while ensuring very low energy consumption.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 500
Author(s):  
E. Laxmi Lydia ◽  
A. Arokiaraj Jovith ◽  
A. Francis Saviour Devaraj ◽  
Changho Seo ◽  
Gyanendra Prasad Joshi

Presently, a green Internet of Things (IoT) based energy aware network plays a significant part in the sensing technology. The development of IoT has a major impact on several application areas such as healthcare, smart city, transportation, etc. The exponential rise in the sensor nodes might result in enhanced energy dissipation. So, the minimization of environmental impact in green media networks is a challenging issue for both researchers and business people. Energy efficiency and security remain crucial in the design of IoT applications. This paper presents a new green energy-efficient routing with DL based anomaly detection (GEER-DLAD) technique for IoT applications. The presented model enables IoT devices to utilize energy effectively in such a way as to increase the network span. The GEER-DLAD technique performs error lossy compression (ELC) technique to lessen the quantity of data communication over the network. In addition, the moth flame swarm optimization (MSO) algorithm is applied for the optimal selection of routes in the network. Besides, DLAD process takes place via the recurrent neural network-long short term memory (RNN-LSTM) model to detect anomalies in the IoT communication networks. A detailed experimental validation process is carried out and the results ensured the betterment of the GEER-DLAD model in terms of energy efficiency and detection performance.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 902
Author(s):  
Sungwon Lee ◽  
Muhammad Azfar Azfar Yaqub ◽  
Dongkyun Kim

The principle of Smart Cities is the interconnection of services, based on a network of Internet of Things (IoT) devices. As the number of IoT devices continue to grow, the demand to organize and maintain the IoT applications is increased. Therefore, the solutions for smart city should have the ability to efficiently utilize the resources and their associated challenges. Neighbor aware solutions can enhance the capabilities of the smart city. In this article, we briefly overview the neighbor aware solutions and challenges in smart cities. We then categorize the neighbor aware solutions and discuss the possibilities using the collaboration among neighbors to extend the lifetime of IoT devices. We also propose a new duty cycle MAC protocol with assistance from the neighbors to extend the lifetime of the nodes. Simulation results further coagulate the impact of neighbor assistance on the performance of IoT devices in smart cities.


2021 ◽  
Vol 7 ◽  
pp. e733
Author(s):  
Abdulrahman Sameer Sadeq ◽  
Rosilah Hassan ◽  
Azana Hafizah Mohd Aman ◽  
Hasimi Sallehudin ◽  
Khalid Allehaibi ◽  
...  

The development of Medium Access Control (MAC) protocols for Internet of Things should consider various aspects such as energy saving, scalability for a wide number of nodes, and grouping awareness. Although numerous protocols consider these aspects in the limited view of handling the medium access, the proposed Grouping MAC (GMAC) exploits prior knowledge of geographic node distribution in the environment and their priority levels. Such awareness enables GMAC to significantly reduce the number of collisions and prolong the network lifetime. GMAC is developed on the basis of five cycles that manage data transmission between sensors and cluster head and between cluster head and sink. These two stages of communication increase the efficiency of energy consumption for transmitting packets. In addition, GMAC contains slot decomposition and assignment based on node priority, and, therefore, is a grouping-aware protocol. Compared with standard benchmarks IEEE 802.15.4 and industrial automation standard 100.11a and user-defined grouping, GMAC protocols generate a Packet Delivery Ratio (PDR) higher than 90%, whereas the PDR of benchmark is as low as 75% in some scenarios and 30% in others. In addition, the GMAC accomplishes lower end-to-end (e2e) delay than the least e2e delay of IEEE with a difference of 3 s. Regarding energy consumption, the consumed energy is 28.1 W/h for GMAC-IEEE Energy Aware (EA) and GMAC-IEEE, which is less than that for IEEE 802.15.4 (578 W/h) in certain scenarios.


In this paper, a review on the LoRa antenna design for IoT application is studied. The expansion of the Internet of Things ( IoT) has led the industry to develop new communication solutions, as current protocols are inadequate in terms of scope and energy efficiency to satisfy IoT requirements. Before studying antenna design, some background LoRa and IoT were discussed at beginning of the paper. LoRaWAN is an open LPWAN standard developed by LoRa Alliance and has main characteristics such as low energy consumption, long-range communication, builtin protection and GPS-free positioning. Besides, a comparison according to the method, resonance frequency, material, size of the antenna and the output is shown in the form of table. In addition, the strength and the weakness of each of the antenna design were discussed before the end of the paper.


Network ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 279-314
Author(s):  
Laith Farhan ◽  
Rasha Subhi Hameed ◽  
Asraa Safaa Ahmed ◽  
Ali Hussein Fadel ◽  
Waled Gheth ◽  
...  

The last decade has witnessed the rise of the proliferation of Internet-enabled devices. The Internet of Things (IoT) is becoming ever more pervasive in everyday life, connecting an ever-greater array of diverse physical objects. The key vision of the IoT is to bring a massive number of smart devices together in integrated and interconnected heterogeneous networks, making the Internet even more useful. Therefore, this paper introduces a brief introduction to the history and evolution of the Internet. Then, it presents the IoT, which is followed by a list of application domains and enabling technologies. The wireless sensor network (WSN) is revealed as one of the important elements in IoT applications, and the paper describes the relationship between WSNs and the IoT. This research is concerned with developing energy-efficiency techniques for WSNs that enable the IoT. After having identified sources of energy wastage, this paper reviews the literature that discusses the most relevant methods to minimizing the energy exhaustion of IoT and WSNs. We also identify the gaps in the existing literature in terms of energy preservation measures that could be researched and it can be considered in future works. The survey gives a near-complete and up-to-date view of the IoT in the energy field. It provides a summary and recommendations of a large range of energy-efficiency methods proposed in the literature that will help and support future researchers. Please note that the manuscript is an extended version and based on the summary of the Ph.D. thesis. This paper will give to the researchers an introduction to what they need to know and understand about the networks, WSNs, and IoT applications from scratch. Thus, the fundamental purpose of this paper is to introduce research trends and recent work on the use of IoT technology and the conclusion that has been reached as a result of undertaking the Ph.D. study.


2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  

Author(s):  
Arvind Kakria ◽  
Trilok Chand Aseri

Background & Objective: Wireless communication has immensely grown during the past few decades due to significant demand for mobile access. Although cost-effective as compared to their wired counterpart, maintaining good quality-of-service (QoS) in these networks has always remained a challenge. Multiple-input Multiple-output (MIMO) systems, which consists of multiple transmitter and receiver antennas, have been widely acknowledged for their QoS and transmit diversity. Though suited for cellular base stations, MIMO systems are not suited for small-sized wireless nodes due to their hardware complexity, cost, and increased power requirements. Cooperative communication that allows relays, i.e. mobile or fixed nodes in a communication network, to share their resources and forward other node’s data to the destination node has substituted the MIMO systems nowadays. To harness the full benefit of cooperative communication, appropriate relay node selection is very important. This paper presents an efficient single-hop distributed relay supporting medium access control (MAC) protocol (EDSRS) that works in the single-hop environment and improves the energy efficiency and the life of relay nodes without compensating the throughput of the network. Methods: The protocol has been simulated using NS2 simulator. The proposed protocol is compared with energy efficient cooperative MAC protocol (EECOMAC) and legacy distributed coordination function (DCF) on the basis of throughput, energy efficiency, transmission delay and an end to end delay with various payload sizes. Result and Conclusion: The result of the comparison indicates that the proposed protocol (EDSRS) outperforms the other two protocols.


Sign in / Sign up

Export Citation Format

Share Document