Utilization of Recycled Polystyrene and Aluminum Wastes in the Development of Conductive Plastic Composites: Evaluation of Electrical Properties

Author(s):  
Joshua O. Ighalo ◽  
Adewale George Adeniyi
1994 ◽  
Vol 9 (7) ◽  
pp. 1829-1833 ◽  
Author(s):  
M. Katsumata ◽  
M. Endo ◽  
H. Yamanashi ◽  
H. Ushijima

Graphite fiber intercalation compounds were prepared by immersing graphitized thin vapor-grown carbon fibers (VGCF's) with diameters less than 0.5 μm into liquid bromine. The composition of Br2-intercalated VGCF was C70Br-C90Br. The powder resistivity of Br2-intercalated VGCF was estimated as 1/3 of pristine VGCF. An electroconductive plastic composite was prepared by mixing phenol resin with that of bromine intercalated VGCF as a conductive filler, and its electrical properties were investigated. The resistivity of a Br2-intercalated VGCF composite was 1.1 × 10−2 Ω · cm at room temperature, which is about 50% of pristine VGCF composite. Br2-intercalated VGCF-based composite had a high degree of stability against exposure at 150 °C in air and at 85 °C with 90% humidity for 500 h. Br2-intercalated VGCF-based plastic composites could be used as highly electroconductive materials.


2016 ◽  
Vol 23 (2) ◽  
pp. 135-144
Author(s):  
Sinan Dönmez ◽  
Aykut Kentli

AbstractElectrical properties of plastic products can be adjusted by adding a certain amount of carbon nanotubes (CNT) in the injection molding process. However, injection molding parameters should be arranged carefully due to their influence on electrical properties of CNT-reinforced plastic composites. In this study, polycarbonate/CNT nanocomposites, having three different CNT concentrations (1, 3 and 5 wt%), were produced and injection molded by using three different injection temperatures and speeds to investigate their influence on electrical resistivity. It was found that the electrical resistivity was influenced greatly by the injection temperature when 1 wt% amount of CNT was used in the nanocomposite. However, the effect of injection speed was negligible.


Author(s):  
F. M. Ross ◽  
R. Hull ◽  
D. Bahnck ◽  
J. C. Bean ◽  
L. J. Peticolas ◽  
...  

We describe an investigation of the electrical properties of interfacial dislocations in strained layer heterostructures. We have been measuring both the structural and electrical characteristics of strained layer p-n junction diodes simultaneously in a transmission electron microscope, enabling us to correlate changes in the electrical characteristics of a device with the formation of dislocations.The presence of dislocations within an electronic device is known to degrade the device performance. This degradation is of increasing significance in the design and processing of novel strained layer devices which may require layer thicknesses above the critical thickness (hc), where it is energetically favourable for the layers to relax by the formation of misfit dislocations at the strained interfaces. In order to quantify how device performance is affected when relaxation occurs we have therefore been investigating the electrical properties of dislocations at the p-n junction in Si/GeSi diodes.


Author(s):  
A.M. Letsoalo ◽  
M.E. Lee ◽  
E.O. de Neijs

Semiconductor devices require metal contacts for efficient collection of electrical charge. The physics of these metal/semiconductor contacts assumes perfect, abrupt and continuous interfaces between the layers. However, in practice these layers are neither continuous nor abrupt due to poor nucleation conditions and the formation of interfacial layers. The effects of layer thickness, deposition rate and substrate stoichiometry have been previously reported. In this work we will compare the effects of a single deposition technique and multiple depositions on the morphology of indium layers grown on (100) CdTe substrates. The electrical characteristics and specific resistivities of the indium contacts were measured, and their relationships with indium layer morphologies were established.Semi-insulating (100) CdTe samples were cut from Bridgman grown single crystal ingots. The surface of the as-cut slices were mechanically polished using 5μm, 3μm, 1μm and 0,25μm diamond abrasive respectively. This was followed by two minutes immersion in a 5% bromine-methanol solution.


Author(s):  
J.P.S. Hanjra

Tin mono selenide (SnSe) with an energy gap of about 1 eV is a potential material for photovoltaic applications. Various authors have studied the structure, electronic and photoelectronic properties of thin films of SnSe grown by various deposition techniques. However, for practical photovoltaic junctions the electrical properties of SnSe films need improvement. We have carried out investigations into the properties of flash evaporated SnSe films. In this paper we report our results on the structure, which plays a dominant role on the electrical properties of thin films by TEM, SEM, and electron diffraction (ED).Thin films of SnSe were deposited by flash evaporation of SnSe fine powder prepared from high purity Sn and Se, onto glass, mica and KCl substrates in a vacuum of 2Ø micro Torr. A 15% HF + 2Ø% HNO3 solution was used to detach SnSe film from the glass and mica substrates whereas the film deposited on KCl substrate was floated over an ethanol water mixture by dissolution of KCl. The floating films were picked up on the grids for their EM analysis.


Physica ◽  
1954 ◽  
Vol 3 (7-12) ◽  
pp. 834-844 ◽  
Author(s):  
H FRITZSCHE ◽  
K LARKHOROVITZ

Sign in / Sign up

Export Citation Format

Share Document