Influence of injection molding parameters on electrical resistivity of carbon nanotube reinforced polycarbonate

2016 ◽  
Vol 23 (2) ◽  
pp. 135-144
Author(s):  
Sinan Dönmez ◽  
Aykut Kentli

AbstractElectrical properties of plastic products can be adjusted by adding a certain amount of carbon nanotubes (CNT) in the injection molding process. However, injection molding parameters should be arranged carefully due to their influence on electrical properties of CNT-reinforced plastic composites. In this study, polycarbonate/CNT nanocomposites, having three different CNT concentrations (1, 3 and 5 wt%), were produced and injection molded by using three different injection temperatures and speeds to investigate their influence on electrical resistivity. It was found that the electrical resistivity was influenced greatly by the injection temperature when 1 wt% amount of CNT was used in the nanocomposite. However, the effect of injection speed was negligible.

Materials ◽  
2005 ◽  
Author(s):  
Adam Kramschuster ◽  
Ryan Cavitt ◽  
Don Ermer ◽  
Chris Shen ◽  
Zhongbao Chen ◽  
...  

This research investigated the effects of processing conditions on the shrinkage and warpage (S&W) behavior of a box-shaped, polypropylene part using conventional, microcellular, and microcellular co-injection molding. Three sets of 26-1 fractional factorial design of experiments (DOE) were employed to perform the experiments and proper statistical theory was used to analyze the data. After the injection molding process reached steady state, molded samples were collected and measured using an optical coordinate measurement machine (OCMM), which had been evaluated using a proper repeatability and reproducibility (R&R) measurement study. By analyzing the statistically significant main and two-factor interaction effects, the results show that the supercritical fluid (SCF) content (nitrogen in this case, in terms of SCF dosage time) and the injection speed affect the S&W of microcellular injection and microcellular co-injection molded parts the most, whereas pack/hold pressure and pack/hold time have the most significant effect on the S&W of conventional injection molded parts. Also, this study quantitatively showed that, within the processing range studied, a reduction in the S&W could be achieved with the microcellular injection molding and micro- cellular co-injection molding processes.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 23
Author(s):  
Jian Wang ◽  
Qianchao Mao ◽  
Nannan Jiang ◽  
Jinnan Chen

The reinforcement and matrix of a polymer material can be composited into a single polymer composite (SPC), which is light weight, high strength, and has easy recyclability. The insert injection molding process can be used to realize the multiple production of SPC products with a short cycle time and wide processing temperature window. However, injection molding is a very complicated process; the influence of several important parameters should be determined to help in the future tailoring of SPCs to specific applications. The effects of varying barrel temperature, injection pressure, injection speed, and holding time on the properties of the insert-injection molded polypropylene (PP) SPC parts were investigated. It was found that the sample weight and tensile properties of the PP SPCs varied in different rules with the variations of these four parameters. The barrel temperature has a significant effect, followed by the holding time and injection pressure. Suitable parameter values should be determined for enhanced mechanical properties. Based on the tensile strength, a barrel temperature of 260 °C, an injection pressure of 127.6 MPa, an injection speed of 0.18 m/s, and a holding time of 60 s were determined as the optimum processing conditions. The best tensile strength and peel strength were up to 120 MPa and 19.44 N/cm, respectively.


2017 ◽  
Vol 728 ◽  
pp. 258-263
Author(s):  
Badin Pinpathomrat ◽  
Suchalinee Mathurosemontri ◽  
Supaphorn Thumsorn ◽  
Hiroyuki Hamada

Aim of this study focused on insert injection molding process, which is molded the melted polymer around an inserted part placed in the molded cavity of injection molding process. The interfacial adhesive strength between the inserted and an injected polymer parts were investigated by Intron universal test machine in order to investigate the effect of material in inserted and injected part. During tensile testing the acoustic emissions (AE) measurement was applied to evaluate the fracture behavior of insert injection molding. It was found that interfacial adhesive strength of insert injection molded of all specimens increased according with increasing the bonding area of adhesive interface. The fracture mode of the insert injection molded specimens was depended on the length of bonding area of the inserted part. The fracture of mode of the insert-injection molded specimens was confirmed by acoustic emission.


2011 ◽  
Vol 271-273 ◽  
pp. 1224-1227
Author(s):  
Fang Qi Cheng

To avoid the defects of plastic products and improve product quality have been an important problem for mold designers. In this paper, Autodesk Moldflow software are applied to a plastic control cover injection molding process simulation and find out the actual molding process and true conditions of the dynamic filling, pressure and cooling process in the process of forming. The forming process of parameters such as pressure, temperature and speed are given in order to improve the accuracy of the mould design and product precision.


2012 ◽  
Vol 468-471 ◽  
pp. 1013-1016 ◽  
Author(s):  
Hua Qing Lai

Molding is one of the most versatile and important processes for manufacturing complex plastic parts. It is a method of fabricating plastic parts by utilizing a mold or cavity that has a shape and size similar to the part being produced. Molten polymer is injected into the cavity, resulting in the desired part upon solidification. The injection-molded parts typically have excellent dimensional tolerance and require almost no finishing and assembly operations. But new variations and emerging innovations of conventional injection molding have been continuously developed to offer special features and benefits that cannot be accomplished by the conventional injection molding process. This study aims to improving the life of stereolithography injection mold.


2022 ◽  
Vol 2022 ◽  
pp. 1-28
Author(s):  
Senthil Kumaran Selvaraj ◽  
Aditya Raj ◽  
R. Rishikesh Mahadevan ◽  
Utkarsh Chadha ◽  
Velmurugan Paramasivam

One of the most suitable methods for the mass production of complicated shapes is injection molding due to its superior production rate and quality. The key to producing higher quality products in injection molding is proper injection speed, pressure, and mold design. Conventional methods relying on the operator’s expertise and defect detection techniques are ineffective in reducing defects. Hence, there is a need for more close control over these operating parameters using various machine learning techniques. Neural networks have considerable applications in the injection molding process consisting of optimization, prediction, identification, classification, controlling, modeling, and monitoring, particularly in manufacturing. In recent research, many critical issues in applying machine learning and neural network in injection molding in practical have been addressed. Some problems include data division, collection, and preprocessing steps, such as considering the inputs, networks, and outputs, algorithms used, models utilized for testing and training, and performance criteria set during validation and verification. This review briefly explains working on machine learning and artificial neural network and optimizing injection molding in industries.


2014 ◽  
Vol 68 (4) ◽  
Author(s):  
Sri Yulis M. Amin ◽  
Norhamidi Muhamad ◽  
Khairur Rijal Jamaludin

The need to optimize the injection molding parameters for producing cemented carbide parts via Metal Injection Molding process is crucial to ensure the system’s robustness towards manufacturer and customer’s satisfactions. Defect free product with best density can be produced while reducing time and cost in manufacturing. In this work, the feedstock consisting of WC-Co powders, mixed with palm stearin and polyethylene binder system was injection molded to produce green parts. Several processing variables, namely powder loading, injection temperature, holding pressure and flowrate, were optimized towards the density of the green body, as the response factor. By considering humidity level at morning and evening conditions as the noise factor, the results show the optimum combination of injection molding parameters that produces best green density. The green part exhibited best density by following this optimum processing parameters, A2B3C1D1, that are flowrate at 20 ccm/s, powder loading at 63% vol., injection temperature at 140°C, and holding pressure at 1700 bar.


2011 ◽  
Vol 189-193 ◽  
pp. 537-540
Author(s):  
Jia Min Zhang ◽  
Ming Yi Zhu ◽  
Zhao Xun Lian ◽  
Rong Zhu

The use of L27 (35) orthogonal to the battery shell injection molding process is optimized. The main factors of technical parameters were determined mould temperature, melt temperature, the speed of injection, injection pressure, cooling time.On the basis of actual production, to determine the factors values of different process parameters.Combination of scrapped products in key (reduction and a high degree of tolerance deflated) tests were selected in the process parameters within the scope of the assessment. Various factors impact on the product of the total height followed by cooling time, mold temperature, melt temperature, injection pressure, injection speed from strong to weak .The best products technological parameters were determined.Good results were obtained for production.


2016 ◽  
Vol 36 (6) ◽  
pp. 557-562 ◽  
Author(s):  
Christian Hopmann ◽  
Malte Röbig

Abstract Nowadays, the injection molding of optical components is becoming more and more important. A process which constructs the injection-molded part in layers offers considerable potential for productivity increases in the manufacturing of thick-walled optical components. The so-called multilayer injection molding, also known as overmolding technology enables a considerable reduction of the normally long cycle times and improves the optical properties. It is even possible to increase the molding accuracy due to the lower shrinkage potential of the single layers. Contrary to experience, the influence of the mold temperature on the bonding strength is very low. So, the temperature control of the mold can be adapted to the process consideration in regard to optical characteristics.


Sign in / Sign up

Export Citation Format

Share Document