Survey of Image Processing Techniques in Medical Image Analysis: Challenges and Methodologies

Author(s):  
P. Chinmayi ◽  
L. Agilandeeswari ◽  
M. Prabukumar
Author(s):  
Stefan Oprea ◽  
Costin Marinescu ◽  
Ioan Lita ◽  
Mariana Jurianu ◽  
Daniel Alexandru Visan ◽  
...  

Author(s):  
Asaad Babker ◽  
Vyacheslav Lyashenko

Objective: Our aim is to show the possibility of using different image processing techniques for blood smear analysis. Also our aim is to determine the sequence of image processing techniques to identify megaloblastic anemia cells. Methods: We consider blood smear image. We use a variety of image processing techniques to identify megaloblastic anemia cells. Among these methods, we distinguish the modification of the color space and the use of wavelets. Results: We developed a sequence of image processing techniques for blood smear image analysis and megaloblastic anemia cells identification. As a characteristic feature for megaloblastic anemia cells identification, we consider neutrophil image structure. We also use the morphological methods of image analysis in order to reveal the nuclear lobes in neutrophil structure. Conclusion: We can identify the megaloblastic anemia cells. To do this, we use the following sequence of blood smear image processing: color image modification, change of the image contrast, use of wavelets and morphological analysis of the cell structure. 


2020 ◽  
Vol 7 ◽  
pp. 1-26 ◽  
Author(s):  
Silas Nyboe Ørting ◽  
Andrew Doyle ◽  
Arno Van Hilten ◽  
Matthias Hirth ◽  
Oana Inel ◽  
...  

Rapid advances in image processing capabilities have been seen across many domains, fostered by the  application of machine learning algorithms to "big-data". However, within the realm of medical image analysis, advances have been curtailed, in part, due to the limited availability of large-scale, well-annotated datasets. One of the main reasons for this is the high cost often associated with producing large amounts of high-quality meta-data. Recently, there has been growing interest in the application of crowdsourcing for this purpose; a technique that has proven effective for creating large-scale datasets across a range of disciplines, from computer vision to astrophysics. Despite the growing popularity of this approach, there has not yet been a comprehensive literature review to provide guidance to researchers considering using crowdsourcing methodologies in their own medical imaging analysis. In this survey, we review studies applying crowdsourcing to the analysis of medical images, published prior to July 2018. We identify common approaches, challenges and considerations, providing guidance of utility to researchers adopting this approach. Finally, we discuss future opportunities for development within this emerging domain.


2021 ◽  
Vol 46 (1) ◽  
Author(s):  
R Rashmi ◽  
Keerthana Prasad ◽  
Chethana Babu K Udupa

AbstractBreast cancer in women is the second most common cancer worldwide. Early detection of breast cancer can reduce the risk of human life. Non-invasive techniques such as mammograms and ultrasound imaging are popularly used to detect the tumour. However, histopathological analysis is necessary to determine the malignancy of the tumour as it analyses the image at the cellular level. Manual analysis of these slides is time consuming, tedious, subjective and are susceptible to human errors. Also, at times the interpretation of these images are inconsistent between laboratories. Hence, a Computer-Aided Diagnostic system that can act as a decision support system is need of the hour. Moreover, recent developments in computational power and memory capacity led to the application of computer tools and medical image processing techniques to process and analyze breast cancer histopathological images. This review paper summarizes various traditional and deep learning based methods developed to analyze breast cancer histopathological images. Initially, the characteristics of breast cancer histopathological images are discussed. A detailed discussion on the various potential regions of interest is presented which is crucial for the development of Computer-Aided Diagnostic systems. We summarize the recent trends and choices made during the selection of medical image processing techniques. Finally, a detailed discussion on the various challenges involved in the analysis of BCHI is presented along with the future scope.


2021 ◽  
Author(s):  
Parashuram Bannigidad ◽  
Namita Potraj ◽  
Prabhuodeyara M. Gurubasavaraj ◽  
Lakkappa B. Anigol

Sign in / Sign up

Export Citation Format

Share Document