ANN-Based Bias Correction Algorithm for Precipitation in the Yarra River Basin, Australia

Author(s):  
P. Saravanan ◽  
C. Sivapragasam ◽  
M. Nitin ◽  
S. Balamurali ◽  
R. K. Ragul ◽  
...  
2020 ◽  
Vol 13 (11) ◽  
pp. 5955-5975
Author(s):  
Hai Zhang ◽  
Shobha Kondragunta ◽  
Istvan Laszlo ◽  
Mi Zhou

Abstract. The Advanced Baseline Imager (ABI) on board the Geostationary Operational Environmental Satellite-R (GOES-R) series enables retrieval of aerosol optical depth (AOD) from geostationary satellites using a multiband algorithm similar to those of polar-orbiting satellites' sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS). However, this work demonstrates that the current version of GOES-16 (GOES-East) ABI AOD has diurnally varying biases due to limitations in the land surface reflectance relationships between the 0.47 µm band and the 2.2 µm band and between the 0.64 µm band and 2.2 µm band used in the ABI AOD retrieval algorithm, which vary with the Sun–satellite geometry and NDVI (normalized difference vegetation index). To reduce these biases, an empirical bias correction algorithm has been developed based on the lowest observed ABI AOD of an adjacent 30 d period and the background AOD at each time step and at each pixel. The bias correction algorithm improves the performance of ABI AOD compared to AErosol RObotic NETwork (AERONET) AOD, especially for the high and medium (top 2) quality ABI AOD. AOD data for the period 6 August to 31 December 2018 are used to evaluate the bias correction algorithm. After bias correction, the correlation between the top 2 quality ABI AOD and AERONET AOD improves from 0.87 to 0.91, the mean bias improves from 0.04 to 0.00, and root-mean-square error (RMSE) improves from 0.09 to 0.05. These results for the bias-corrected top 2 qualities ABI AOD are comparable to those of the corrected high-quality ABI AOD. By using the top 2 qualities of ABI AOD in conjunction with the bias correction algorithm, the areal coverage of ABI AOD is increased by about 100 % without loss of data accuracy.


2014 ◽  
Vol 11 (11) ◽  
pp. 12659-12696 ◽  
Author(s):  
G. H. Fang ◽  
J. Yang ◽  
Y. N. Chen ◽  
C. Zammit

Abstract. Water resources are essential to the ecosystem and social economy in the desert and oasis of the arid Tarim River Basin, Northwest China, and expected to be vulnerable to climate change. Regional Climate Models (RCM) have been proved to provide more reliable results for regional impact study of climate change (e.g. on water resources) than GCM models. However, it is still necessary to apply bias correction before they are used for water resources research due to often considerable biases. In this paper, after a sensitivity analysis on input meteorological variables based on Sobol' method, we compared five precipitation correction methods and three temperature correction methods to the output of a RCM model with its application to the Kaidu River Basin, one of the headwaters of the Tarim River Basin. Precipitation correction methods include Linear Scaling (LS), LOCal Intensity scaling (LOCI), Power Transformation (PT), Distribution Mapping (DM) and Quantile Mapping (QM); and temperature correction methods include LS, VARIance scaling (VARI) and DM. These corrected precipitation and temperature were compared to the observed meteorological data, and then their impacts on streamflow were also compared by driving a distributed hydrologic model. The results show: (1) precipitation, temperature, solar radiation are sensitivity to streamflow while relative humidity and wind speed are not, (2) raw RCM simulations are heavily biased from observed meteorological data, which results in biases in the simulated streamflows, and all bias correction methods effectively improved theses simulations, (3) for precipitation, PT and QM methods performed equally best in correcting the frequency-based indices (e.g. SD, percentile values) while LOCI method performed best in terms of the time series based indices (e.g. Nash–Sutcliffe coefficient, R2), (4) for temperature, all bias correction methods performed equally well in correcting raw temperature. (5) For simulated streamflow, precipitation correction methods have more significant influence than temperature correction methods and the performances of streamflow simulations are consistent with these of corrected precipitation, i.e. PT and QM methods performed equally best in correcting flow duration curve and peak flow while LOCI method performed best in terms of the time series based indices. The case study is for an arid area in China based on a specific RCM and hydrologic model, but the methodology and some results can be applied to other area and other models.


Author(s):  
Teerawat RAM-INDRA ◽  
Yasuto TACHIKAWA ◽  
Kazuaki YOROZU ◽  
Yutaka ICHIKAWA

2007 ◽  
Vol 11 (4) ◽  
pp. 1373-1390 ◽  
Author(s):  
D. Sharma ◽  
A. Das Gupta ◽  
M. S. Babel

Abstract. Global Climate Models (GCMs) precipitation scenarios are often characterized by biases and coarse resolution that limit their direct application for basin level hydrological modeling. Bias-correction and spatial disaggregation methods are employed to improve the quality of ECHAM4/OPYC SRES A2 and B2 precipitation for the Ping River Basin in Thailand. Bias-correction method, based on gamma-gamma transformation, is applied to improve the frequency and amount of raw GCM precipitation at the grid nodes. Spatial disaggregation model parameters (β,σ2), based on multiplicative random cascade theory, are estimated using Mandelbrot-Kahane-Peyriere (MKP) function at q=1 for each month. Bias-correction method exhibits ability of reducing biases from the frequency and amount when compared with the computed frequency and amount at grid nodes based on spatially interpolated observed rainfall data. Spatial disaggregation model satisfactorily reproduces the observed trend and variation of average rainfall amount except during heavy rainfall events with certain degree of spatial and temporal variations. Finally, the hydrologic model, HEC-HMS, is applied to simulate the observed runoff for upper Ping River Basin based on the modified GCM precipitation scenarios and the raw GCM precipitation. Precipitation scenario developed with bias-correction and disaggregation provides an improved reproduction of basin level runoff observations.


Author(s):  
Maedeh Enayati ◽  
Omid Bozorg-Haddad ◽  
Javad Bazrafshan ◽  
Somayeh Hejabi ◽  
Xuefeng Chu

Abstract This study aims to conduct a thorough investigation to compare the abilities of QM techniques as a bias correction method for the raw outputs from GCM/RCM combinations. The Karkheh River basin in Iran was selected as a case study, due to its diverse topographic features, to test the performances of the bias correction methods under different conditions. The outputs of two GCM/RCM combinations (ICHEC and NOAA-ESM) were acquired from the CORDEX dataset for this study. The results indicated that the performances of the QMs varied, depending on the transformation functions, parameter sets, and topographic conditions. In some cases, the QMs' adjustments even made the GCM/RCM combinations' raw outputs worse. The result of this study suggested that apart from DIST, PTF:scale, and SSPLIN, the rest of the considered QM methods can provide relatively improved results for both rainfall and temperature variables. It should be noted that, according to the results obtained from the diverse topographic conditions of the sub-basins, the empirical quantiles (QUANT) and robust empirical quantiles (RQUANT) methods proved to be excellent options to correct the bias of rainfall data, while all bias correction methods, with the notable exceptions of performed PTF:scale and SSPLIN, performed relatively well for the temperature variable.


2019 ◽  
Vol 51 (1) ◽  
pp. 105-126 ◽  
Author(s):  
Eugene Zhen Xiang Soo ◽  
Wan Zurina Wan Jaafar ◽  
Sai Hin Lai ◽  
Faridah Othman ◽  
Ahmed Elshafie ◽  
...  

Abstract Even though satellite precipitation products have received an increasing amount of attention in hydrology and meteorology, their estimations are prone to bias. This study investigates the three approaches of bias correction, i.e., linear scaling (LS), local intensity scaling (LOCI) and power transformation (PT), on the three advanced satellite precipitation products (SPPs), i.e., CMORPH, TRMM and PERSIANN over the Langat river basin, Malaysia by focusing on five selected extreme floods due to northeast monsoon season. Results found the LS scheme was able to match the mean precipitation of every SPP but does not correct standard deviation (SD) or coefficient of variation (CV) of the estimations regardless of extreme floods selected. For LOCI scheme, only TRMM and CMORPH estimations in certain floods have showed some improvement in their results. This might be due to the rainfall threshold set in correcting process. PT scheme was found to be the best method as it improved most of the statistical performances as well as the rainfall distribution of the floods. Sensitivity of the parameters used in the bias correction is also investigated. PT scheme is found to be least sensitive in correcting the daily SPPs compared to the other two schemes. However, careful consideration should be given for correcting the CMORPH and PERSIANN estimations.


2007 ◽  
Vol 4 (1) ◽  
pp. 35-74 ◽  
Author(s):  
D. Sharma ◽  
A. Das Gupta ◽  
M. S. Babel

Abstract. Global Climate Models (GCMs) precipitation scenarios are often characterized by biases and coarse resolution that limit their direct application for basin level hydrological modeling. Bias-correction and spatial disaggregation methods are employed to improve the quality of ECHAM4/OPYC SRES A2 and B2 precipitation for the Ping River Basin in Thailand. Bias-correction method, based on gamma-gamma transformation, is applied to improve the frequency and amount of raw GCM precipitation at the grid nodes. Spatial disaggregation model parameters (β,σ2), based on multiplicative random cascade theory, are estimated using Mandelbrot-Kahane-Peyriere (MKP) function at q=1 for each month. Bias-correction method exhibits ability of reducing biases from the frequency and amount when compared with the computed frequency and amount at grid nodes based on spatially interpolated observed rainfall data. Spatial disaggregation model satisfactorily reproduces the observed trend and variation of average rainfall amount except during heavy rainfall events with certain degree of spatial and temporal variations. Finally, the hydrologic model, HEC-HMS, is applied to simulate the observed runoff for upper Ping River Basin based on the modified GCM precipitation scenarios and the raw GCM precipitation. Precipitation scenario developed with bias-correction and disaggregation provides an improved reproduction of basin level runoff observations.


2020 ◽  
Author(s):  
Hai Zhang ◽  
Shobha Kondragunta ◽  
Istvan Laszlo ◽  
Mi Zhou

Abstract. The Advanced Baseline Imager (ABI) on board the Geostationary Operational Environmental Satellite-R (GOES-R) series enables retrieval of aerosol optical depth (AOD) from geostationary satellites using a multi-band algorithm similar to those of polar-orbiting satellites’ sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS). Therefore, ABI AOD is expected to have accuracy and precision comparable to MODIS AOD and VIIRS AOD. However, this work demonstrates that the current version of GOES-16 (GOES-East) ABI AOD has diurnally varying biases due to errors in the land surface reflectance relationship between the bands used in the ABI AOD retrieval algorithm, which vary with respect to the Sun-satellite geometry. To reduce these biases, an empirical bias correction algorithm has been developed based on the lowest observed ABI AOD of an adjacent 30-day period and the background AOD at each time step and at each pixel. The bias correction algorithm improves the performance of ABI AOD compared to AErosol RObotic NETwork (AERONET) AOD, especially for the high and medium (top 2) quality ABI AOD. AOD data for the period August 6 to December 31, 2018 are used to validate the bias correction algorithm. For the top 2 qualities ABI AOD, after bias correction, the correlation between ABI AOD and AERONET AOD improves from 0.87 to 0.91, the mean bias improves from 0.04 to 0.00, and root mean square error (RMSE) improves from 0.09 to 0.05. These results for the bias corrected top 2 qualities ABI AOD are comparable to those of the uncorrected high-quality ABI AOD. Thus, by using the top 2 qualities of ABI AOD in conjunction with the bias correction algorithm, the area coverage of ABI AOD is substantially increased without loss of data accuracy.


Sign in / Sign up

Export Citation Format

Share Document