Universal HIL Test Platform for Mechatronic Systems

Author(s):  
Peter Talian ◽  
Daniela Perduková ◽  
Pavol Fedor
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 34040-34053
Author(s):  
Jun Hashimoto ◽  
Taha Selim Ustun ◽  
Masaichi Suzuki ◽  
Shuichi Sugahara ◽  
Michiyuki Hasegawa ◽  
...  

2020 ◽  
pp. 1-13
Author(s):  
Yuanyuan Gao ◽  
Yu Hua ◽  
Yu Xiang ◽  
Changjiang Huang ◽  
Shanhe Wang ◽  
...  

Abstract The positioning technique employing the ubiquitous signals of opportunity of non-cooperative satellites does not send special navigation signals, instead it passively receives satellite signals as noise, presenting advantages of concealment and difficulty for potential attackers. Thus, this study investigates the ranging principle and model using non-cooperative communication satellites and a time difference estimation algorithm. The technology of time difference measurement under non-cooperative observation mode was determined and simulated. A test platform for time difference measurement was built to receive the signal from an unknown geostationary Earth orbit communication satellite and verify the ranging feasibility and performance. The ranging accuracy was found to be smaller than 6 m, as demonstrated by experimental data, which shows the viability of the proposed positioning technique for ranging technology.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1486
Author(s):  
Israel Zamudio-Ramirez ◽  
Roque A. Osornio-Rios ◽  
Jose A. Antonino-Daviu ◽  
Jonathan Cureño-Osornio ◽  
Juan-Jose Saucedo-Dorantes

Electric motors have been widely used as fundamental elements for driving kinematic chains on mechatronic systems, which are very important components for the proper operation of several industrial applications. Although electric motors are very robust and efficient machines, they are prone to suffer from different faults. One of the most frequent causes of failure is due to a degradation on the bearings. This fault has commonly been diagnosed at advanced stages by means of vibration and current signals. Since low-amplitude fault-related signals are typically obtained, the diagnosis of faults at incipient stages turns out to be a challenging task. In this context, it is desired to develop non-invasive techniques able to diagnose bearing faults at early stages, enabling to achieve adequate maintenance actions. This paper presents a non-invasive gradual wear diagnosis method for bearing outer-race faults. The proposal relies on the application of a linear discriminant analysis (LDA) to statistical and Katz’s fractal dimension features obtained from stray flux signals, and then an automatic classification is performed by means of a feed-forward neural network (FFNN). The results obtained demonstrates the effectiveness of the proposed method, which is validated on a kinematic chain (composed by a 0.746 KW induction motor, a belt and pulleys transmission system and an alternator as a load) under several operation conditions: healthy condition, 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm hole diameter on the bearing outer race, and 60 Hz, 50 Hz, 15 Hz and 5 Hz power supply frequencies


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 420
Author(s):  
Phong B. Dao

Multiagent control system (MACS) has become a promising solution for solving complex control problems. Using the advantages of MACS-based design approaches, a novel solution for advanced control of mechatronic systems has been developed in this paper. The study has aimed at integrating learning control into MACS. Specifically, learning feedforward control (LFFC) is implemented as a pattern for incorporation in MACS. The major novelty of this work is that the feedback control part is realized in a real-time periodic MACS, while the LFFC algorithm is done on-line, asynchronously, and in a separate non-real-time aperiodic MACS. As a result, a MACS-based LFFC design method has been developed. A second-order B-spline neural network (BSN) is used as a function approximator for LFFC whose input-output mapping can be adapted during control and is intended to become equal to the inverse model of the plant. To provide real-time features for the MACS-based LFFC system, the open robot control software (OROCOS) has been employed as development and runtime environment. A case study using a simulated linear motor in the presence of nonlinear cogging and friction force as well as mass variations is used to illustrate the proposed method. A MACS-based LFFC system has been designed and implemented for the simulated plant. The system consists of a setpoint generator, a feedback controller, and a time-index LFFC that can learn on-line. Simulation results have demonstrated the applicability of the design method.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3830
Author(s):  
Shicheng Sun ◽  
Chuanxin Rong ◽  
Hua Cheng ◽  
Bin Wang ◽  
Xiaogang Jiang ◽  
...  

Groundwater velocity has significant effects on the formation of a frozen curtain during freezing. In order to study the influence of the velocity on a frozen curtain, a large physical model test platform was established for double-pipe freezing. Based on this platform, freezing tests for different velocities were carried out. Quartz sand was selected as a similar material. The freezing temperature of the saturated sand layer was found by analyzing the results of the nuclear magnetic resonance (NMR). Based on the study of the thermal physical properties of the sand layer, the freezing test results were analyzed, and the results showed that the flow led to the differential development of the temperature between the upstream and downstream sections of the freezing pipes. Moreover, the larger the velocity, the greater the difference. The flow prolonged the overlapping time of the frozen curtains. Additionally, the flow slowed down the development of the frozen curtain area and the frozen curtain thickness. The larger the flow velocity, the greater the inhibition of the flow on the development of the frozen curtain. The test results can provide more references for the design and construction of freezing engineering with flowing groundwater.


Sign in / Sign up

Export Citation Format

Share Document