Economics of Site-Specific and Variable-Dose Herbicide Application

Author(s):  
Jens Erik Ørum ◽  
Per Kudsk ◽  
Peter Kryger Jensen
2012 ◽  
Vol 92 (5) ◽  
pp. 923-931 ◽  
Author(s):  
H. J. Beckie ◽  
S. Shirriff

Beckie, H. J. and Shirriff, S. 2012. Site-specific wild oat ( Avena fatua L.) management. Can. J. Plant Sci. 92: 923–931. Variation in soil properties, such as soil moisture, across a hummocky landscape may influence wild oat emergence and growth. To evaluate wild oat emergence, growth, and management according to landscape position, a study was conducted from 2006 to 2010 in a hummocky field in the semiarid Moist Mixed Grassland ecoregion of Saskatchewan. The hypothesis tested was that wild oat emergence and growth would be greater in lower than upper slope positions under normal or dry early growing season conditions. Three herbicide treatments were imposed on the same plots each year of a 2-yr canola (Brassica napus L.) – wheat (Triticum aestivum L.) sequence: (1) nontreated (weedy) control; (2) herbicide application to upper and lower slope positions (i.e., full or blanket application); and (3) herbicide application to lower slope position only. Slope position affected crop and weed densities before in-crop herbicide application in years with dry spring growing conditions. Site-specific wild oat herbicide application in hummocky fields in semiarid regions may be justified based on results of wild oat control averaged across slope position. In year 2 of the crop sequence (wheat), overall (i.e., lower and upper slope) wild oat control based on density, biomass, and dockage (i.e., seed return) was similar between site-specific and full herbicide treatment in 2 of 3 yr. Because economic thresholds have not been widely adopted by growers in managing wild oat, site-specific treatment in years when conditions warrant may be an appropriate compromise between no application and blanket herbicide application.


2015 ◽  
pp. 167-173 ◽  
Author(s):  
A. Ribeiro ◽  
C. Fernandez-Quintanilla ◽  
J. Dorado ◽  
F. López-Granados ◽  
J.M. Peña ◽  
...  

2013 ◽  
Vol 59 (No. 3) ◽  
pp. 101-107 ◽  
Author(s):  
P. Hamouz ◽  
K. Hamouzová ◽  
J. Holec ◽  
L. Tyšer

An aggregated distribution pattern of weed populations provides opportunity to reduce the herbicide application if site-specific weed management is adopted. This work is focused on the practical testing of site-specific weed management in a winter wheat and the optimisation of the control thresholds. Patch spraying was applied to an experimental field in Central Bohemia. Total numbers of 512 application cells were arranged into 16 blocks, which allowed the randomisation of four treatments in four replications. Treatment 1 represented blanket spraying and the other treatments differed by the herbicide application thresholds. The weed infestation was estimated immediately before the post-emergence herbicide application. Treatment maps for every weed group were created based on the weed abundance data and relevant treatment thresholds. The herbicides were applied using a sprayer equipped with boom section control. The herbicide savings were calculated for every treatment and the differences in the grain yield between the treatments were tested using the analysis of variance. The site-specific applications provided herbicide savings ranging from 15.6% to 100% according to the herbicide and application threshold used. The differences in yield between the treatments were not statistically significant (P = 0.81). Thus, the yield was not lowered by site-specific weed management.


2006 ◽  
Vol 7 (6) ◽  
pp. 379-392 ◽  
Author(s):  
Tyler W. Rider ◽  
Jeffrey W. Vogel ◽  
J. Anita Dille ◽  
Kevin C. Dhuyvetter ◽  
Terry L. Kastens

2004 ◽  
Vol 18 (4) ◽  
pp. 1101-1110 ◽  
Author(s):  
Gail G. Wilkerson ◽  
Andrew J. Price ◽  
Andrew C. Bennett ◽  
David W. Krueger ◽  
Gary T. Roberson ◽  
...  

Field experiments were conducted on two North Carolina research stations in 1999, 2000, and 2001; on-farm in Lenoir, Wayne, and Wilson counties, NC, in 2002; and on-farm in Port Royal, VA, in 2000, 2001, and 2002 to evaluate possible gains from site-specific herbicide applications at these locations. Fields were scouted for weed populations using custom software on a handheld computer linked to a Global Positioning System. Scouts generated field-specific sampling grids and recorded weed density information for each grid cell. The decision aid HADSS™ (Herbicide Application Decision Support System) was used to estimate expected net return and yield loss remaining after treatment in each sample grid of every field under differing assumptions of weed size and soil moisture conditions, assuming the field was planted with either conventional or glyphosate-resistant (GR) soybean. The optimal whole-field treatment (that treatment with the highest expected net return summed across all grid cells within a field) resulted in average theoretical net returns of $79/ha (U.S. dollars) and $139/ha for conventional and GR soybean, respectively. When the most economical treatment for each grid cell was used in site-specific weed management, theoretical net returns increased by $13/ha (conventional) and $4.50/ha (GR), and expected yield loss after treatment was reduced by 10.5 and 4%, respectively, compared with the whole-field optimal treatment. When the most effective treatment for each grid cell was used in site-specific weed management, theoretical net returns decreased by $18/ha (conventional) and $4/ha (GR), and expected yield loss after treatment was reduced by 27 and 19%, respectively, compared with the whole-field optimal treatment. Site-specific herbicide applications could have reduced the volume of herbicides sprayed by as much as 70% in some situations but increased herbicide amounts in others. On average, the whole-field treatment was optimal in terms of net return for only 35% (conventional) and 57% (GR) of grid cells.


Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 474-485 ◽  
Author(s):  
Louis Longchamps ◽  
Bernard Panneton ◽  
Robin Reich ◽  
Marie-Josée Simard ◽  
Gilles D. Leroux

Weeds are often spatially aggregated in maize fields, and the level of aggregation varies across and within fields. Several annual weed species are present in maize fields before postemergence herbicide application, and herbicides applied will control several species at a time. The goal of this study was to assess the spatial distribution of multispecies weed infestation in maize fields. Ground-based imagery was used to map weed infestations in rain-fed maize fields. Image segmentation was used to extract weed cover information from geocoded images, and an expert-based threshold of 0.102% weed cover was used to generate maps of weed presence/absence. From 19 site-years, 13 (68%) demonstrated a random spatial distribution, whereas six site-years demonstrated an aggregated spatial pattern of either monocotyledons, dicotyledons, or both groups. The results of this study indicated that monocotyledonous and dicotyledonous weed groups were not spatially segregated, but discriminating these weed groups slightly increased the chances of detecting an aggregated pattern. It was concluded that weeds were not always spatially aggregated in maize fields. These findings emphasize the need for techniques allowing the assessment of weed aggregation prior to conducting site-specific weed management.


2017 ◽  
Vol 60 (3) ◽  
pp. 635-644
Author(s):  
Chenghai Yang ◽  
Daniel E. Martin

Abstract. As remote sensing and variable-rate technology are becoming more available for aerial applicators, practical methodologies for effective integration of these technologies are needed for site-specific aerial applications of crop production and protection materials. The objectives of this study were to demonstrate how to integrate an airborne multispectral imaging system and an IntelliStar variable-rate aerial application system for site-specific management of the winter weed henbit. The airborne imaging system was used to acquire natural color and near-infrared (NIR) images of a fallow field near College Station, Texas, for mapping the infestation of henbit shortly before herbicide application. The images were then rectified, classified, and converted to a binary prescription map with the full application rate on infested areas and the zero rate on non-infested areas. The variable-rate aerial application system mounted on an agricultural aircraft was used to apply glyphosate over the field based on the prescription map. Airborne imagery was collected 14 days after the herbicide application. The as-applied map along with the prescription map and the post-application imagery were used to assess the performance of the site-specific application. Spatial and statistical analysis results showed that the imaging system was effective for mapping henbit infestations and for assessing the performance of site-specific herbicide application, and that the variable-rate system accurately delivered the product at the desired rate to the prescribed areas for effective control of the weed. The methodology and results from this study will be useful for aerial applicators to incorporate airborne imaging and variable-rate application systems into their aerial application business to increase their capabilities and profits. Keywords: Aerial application, As-applied map, Henbit, Imaging system, Prescription map, Variable-rate technology.


2014 ◽  
Vol 60 (No. 1) ◽  
pp. 27-35 ◽  
Author(s):  
P. Hamouz ◽  
K. Hamouzová ◽  
L. Tyšer ◽  
J. Holec

Site-specific weed management (SSWM) methods allow spatially variable treatment of weed populations according to actual weed abundance, thus offering the opportunity for herbicide savings. However, SSWM&rsquo;s effect on weed population dynamics is not sufficiently understood. In this study, SSWM was conducted based on various application thresholds to analyse the effects on crop yield and weed infestation in the succeeding crop. SSWM was used on a 3.07 ha experimental field in winter wheat (2011) and winter oilseed rape (2012). The whole area was split into application cells of 6 &times; 10 m and abundance of all weed species was evaluated manually in each cell. Four different herbicide treatments were tested. Standard whole-field herbicide application (blanket spraying) was treatment 1.<br /> Treatments 2, 3 and 4 comprised SSWM using different thresholds for post-emergent herbicide application. SSWM resulted in savings of post-emergent herbicides ranging from 71.9% to 100%, depending on the application threshold. Differences in winter rape yield among treatments were generally small and statistically insignificant<br /> (P = 0.989). Although some minor changes in weed abundances were observable, the experiment showed that none of the site-specific herbicide treatments caused a significant (&alpha; = 0.05) increase of weed species abundance compared to the standard treatment.


2014 ◽  
Vol 60 (No. 11) ◽  
pp. 518-524 ◽  
Author(s):  
P. Hamouz ◽  
K. Hamouzová ◽  
J. Holec ◽  
L. Tyšer

This work is focused on evaluating the effects of site-specific weed management (SSWM) on weed populations over a 4-year period. SSWM was used on a 3.07 ha experimental field during 2011&ndash;2014 in a rotation of winter wheat and winter oilseed rape. The area was split into application cells of 6 &times; 10 m and weed abundance was evaluated manually in each cell. Four different herbicide treatments were tested. Standard whole-field herbicide application (blanket spraying) was treatment 1. Treatments 2, 3 and 4 comprised SSWM using different thresholds for post-emergent herbicide applications. SSWM resulted in herbicide savings of 6.3&ndash;100% for Galium aparine, 0&ndash;84.4% for other dicotyledonous weeds, and 31.3&ndash;90.6% for annual monocotyledonous weeds. SSWM led to significantly increased density of G. aparine and Tripleurospermum inodorum in the final experimental year when compared to the blanket treatment. Negative correlation coefficients between 2011 and 2014 plant densities found in SSWM treatments (&minus;0.237 to &minus;0.401) indicate that Apera spica-venti does not establish a long-term soil seed bank.


Sign in / Sign up

Export Citation Format

Share Document