scholarly journals Approximate FPGA-Based LSTMs Under Computation Time Constraints

Author(s):  
Michalis Rizakis ◽  
Stylianos I. Venieris ◽  
Alexandros Kouris ◽  
Christos-Savvas Bouganis
2017 ◽  
Vol 02 (02) ◽  
pp. 1740003
Author(s):  
Giuseppina Gini ◽  
Lisa Mazzon ◽  
Simone Pontiggia ◽  
Paolo Belluco

Prostheses and exoskeletons need a control system able to rapidly understand user intentions; a noninvasive method is to deploy a myoelectric system, and a pattern recognition method to classify the intended movement to input to the controller. Here we focus on the classification phase. Our first aim is to recognize nine movements of the shoulder, a body part seldom considered in the literature and difficult to treat since the muscles involved are deep. We show that our novel sEMG two-phase classifier, working on a signal window of 500[Formula: see text]ms with 62[Formula: see text]ms increment, has a 97.7% accuracy for nine movements and about 100% accuracy on five movements. After developing the classifier using professionally collected sEMG data from eight channels, our second aim is to implement the classifier on a wearable device, composed by the Intel Edison board and a three-channel experimental portable acquisition board. Our final aim is to develop a complete classifier for dynamic situations, considering the transitions between movements and the real-time constraints. The performance of the classifier, using three channels, is about 96.9%, the classification frequency is 62[Formula: see text]Hz, and the computation time is 16[Formula: see text]ms, far less than the real-time constraint of 300[Formula: see text]ms.


2008 ◽  
Vol 29 (3) ◽  
pp. 130-133 ◽  
Author(s):  
Corinna Titze ◽  
Martin Heil ◽  
Petra Jansen

Gender differences are one of the main topics in mental rotation research. This paper focuses on the influence of the performance factor task complexity by using two versions of the Mental Rotations Test (MRT). Some 300 participants completed the test without time constraints, either in the regular version or with a complexity reducing template creating successive two-alternative forced-choice tasks. Results showed that the complexity manipulation did not affect the gender differences at all. These results were supported by a sufficient power to detect medium effects. Although performance factors seem to play a role in solving mental rotation problems, we conclude that the variation of task complexity as realized in the present study did not.


Methodology ◽  
2007 ◽  
Vol 3 (1) ◽  
pp. 14-23 ◽  
Author(s):  
Juan Ramon Barrada ◽  
Julio Olea ◽  
Vicente Ponsoda

Abstract. The Sympson-Hetter (1985) method provides a means of controlling maximum exposure rate of items in Computerized Adaptive Testing. Through a series of simulations, control parameters are set that mark the probability of administration of an item on being selected. This method presents two main problems: it requires a long computation time for calculating the parameters and the maximum exposure rate is slightly above the fixed limit. Van der Linden (2003) presented two alternatives which appear to solve both of the problems. The impact of these methods in the measurement accuracy has not been tested yet. We show how these methods over-restrict the exposure of some highly discriminating items and, thus, the accuracy is decreased. It also shown that, when the desired maximum exposure rate is near the minimum possible value, these methods offer an empirical maximum exposure rate clearly above the goal. A new method, based on the initial estimation of the probability of administration and the probability of selection of the items with the restricted method ( Revuelta & Ponsoda, 1998 ), is presented in this paper. It can be used with the Sympson-Hetter method and with the two van der Linden's methods. This option, when used with Sympson-Hetter, speeds the convergence of the control parameters without decreasing the accuracy.


2011 ◽  
Vol 41 (2) ◽  
pp. 35
Author(s):  
MARY ANN MOON
Keyword(s):  

2018 ◽  
Author(s):  
Pavel Pokhilko ◽  
Evgeny Epifanovsky ◽  
Anna I. Krylov

Using single precision floating point representation reduces the size of data and computation time by a factor of two relative to double precision conventionally used in electronic structure programs. For large-scale calculations, such as those encountered in many-body theories, reduced memory footprint alleviates memory and input/output bottlenecks. Reduced size of data can lead to additional gains due to improved parallel performance on CPUs and various accelerators. However, using single precision can potentially reduce the accuracy of computed observables. Here we report an implementation of coupled-cluster and equation-of-motion coupled-cluster methods with single and double excitations in single precision. We consider both standard implementation and one using Cholesky decomposition or resolution-of-the-identity of electron-repulsion integrals. Numerical tests illustrate that when single precision is used in correlated calculations, the loss of accuracy is insignificant and pure single-precision implementation can be used for computing energies, analytic gradients, excited states, and molecular properties. In addition to pure single-precision calculations, our implementation allows one to follow a single-precision calculation by clean-up iterations, fully recovering double-precision results while retaining significant savings.


Author(s):  
Ervina Varijki ◽  
Bambang Krismono Triwijoyo

One type of cancer that is capable identified using MRI technology is breast cancer. Breast cancer is still the leading cause of death world. therefore early detection of this disease is needed. In identifying breast cancer, a doctor or radiologist analyzing the results of magnetic resonance image that is stored in the format of the Digital Imaging Communication In Medicine (DICOM). It takes skill and experience sufficient for diagnosis is appropriate, andaccurate, so it is necessary to create a digital image processing applications by utilizing the process of object segmentation and edge detection to assist the physician or radiologist in identifying breast cancer. MRI image segmentation using edge detection to identification of breast cancer using a method stages gryascale change the image format, then the binary image thresholding and edge detection process using the latest Robert operator. Of the20 tested the input image to produce images with the appearance of the boundary line of each region or object that is visible and there are no edges are cut off, with the average computation time less than one minute.


Author(s):  
Olexandr Grebenuk ◽  
Volodymyr Pavlenko

The application of ports and adapters architecture (other names bulbous, layered, hexagonal) in iterative software development is considered in accordance with the requirements that come in chronological order in the practical example. Each iteration is supported by the schema architecture, problems encountered and their solution. The expediency of using the considered architecture in the iterative development of software with time constraints is shown. The system of collecting data on the concentration of carbon dioxide of the environment and air temperature in real time from a distributed network of sensors with a predetermined geolocation for medical institutions was developed. Put sensor information (ID, commissioning date and end date) in the Google Sheets spreadsheet. The data from the sensors should be collected on the server by REST service. The process of PPP in a specific project with significant time constraints is investigated, applying the rules and principles laid down in the architecture of ports and adapters, using the basic metrics to evaluate the complexity of adding new functionality, testing, concurrent development, speed and ease of development; draw conclusions about the conditions when it is appropriate to apply the chosen software design approach, and the ability of such an approach to perceive software requirements changes. The architecture of ports and adapters is useful if the system has many external integrations (mail service, push messages, databases, reporting system, etc.). The one-way communication with adapters guarantees the integrity of the main algorithmic part of the program. A thorough knowledge of the domain allows you to immediately determine the domain layer. Building a system structure that optimally reflects the domain requires the most time, and it will be costly in the future to correct errors made during the process of defining system layers (interfaces and systems). Domain logic testing is fast due to Unit tests, other tests are easy to write due to the small connectivity between layers. This architecture is not a completely new approach, but it takes the best of OOP, SOLID, DDD and determines how to apply these principles in the best way.


Sign in / Sign up

Export Citation Format

Share Document