Development and Characterization of Modular Ceramic and Metal Elements in Vertical Gardens and Ventilated Façades in Buildings

Author(s):  
V. Pérez-Andreu ◽  
C. Aparicio-Fernández ◽  
F. Castilla ◽  
J.-L. Vivancos
Keyword(s):  
2017 ◽  
Vol 20 ◽  
pp. 43-50 ◽  
Author(s):  
Michal Tupec ◽  
Veronika Hýsková ◽  
Kateřina Bělonožníková ◽  
Jakub Hraníček ◽  
Václav Červený ◽  
...  

2007 ◽  
Vol 1063 ◽  
Author(s):  
Reed Ayers ◽  
Whitney High ◽  
John Chandler ◽  
Jim Ranville

ABSTRACTCertain diseases have been associated with the administration of heavy elements as contrast agents to patients undergoing medical imaging procedures. Recently, the presence of gadolinium (Gd) administered as a paramagnetic contrast agent for MRI contrast studies was associated with the incidence of Nephrogenic Fibrosing Dermopathy (NFD), also called Nephrogenic Systemic Fibrosis (NSF). To determine specific causation, Gd and other metallic nanoparticles in various tissues must be detected directly and characterized in-situ. This is done to develop specific mechanisms for the chemical modification of the metal elements as the result of a biologic response. Fixed biopsies embedded in paraffin were sectioned at 3-5 μm thick, deparaffinized by hand (xylene and 100% ethyl alcohol), placed on carbon planchettes, and allowed to air dry. Deparaffinized tissues were examined using a field emission SEM (FE-SEM) to directly detect and image the presence of Gd as well as other metals. Backscatter electron (BSE) imaging (20kV) was used to discern metal particles within tissues. Energy dispersive spectroscopy (EDS) (15kV) was used to verify the specific elements present. This allowed for the spatial characterization of the nanoparticles within the tissues but due to the physical limitations of SEM/EDS, quantification of the amount of metal was not possible. Mass concentration of the metal elements was determined using inductively coupled plasma mass spectrometry (ICP-MS) on digested tissues. Thick tissue sections, >30 μm, were used for ICP-MS to provide enough mass for detection. These sections were taken from the histology blocks adjacent to the thin sections used in the FE-SEM. Gadolinium was detected in skin, heart, lung and liver tissues. The highest concentrations were found in heart and skin; both had average tissue concentrations greater than 200μg/g (100-450μg/g range). In skin, gadolinium nano-particulates were readily seen near cell body locations in autopsy samples and within the cells in biopsy samples. The cells where gadolinium was most easily found were along blood vessels. In the cells the agglomerates appear granular with a size of less than 100 nm. They are diffused throughout the cell but as of this time not associated with any particular cell structure. Subsequent work using TEM will examine that aspect as well as the specific ultrastructure and chemistry of the nanoparticles. In this investigation, gadolinium was detected in the tissues of a number of patients with NSF. Although neither dispositive of a pathophysiologic mechanism, nor proof of causation, the detection and quantification of gadolinium within tissues of NSF patients is supportive of the epidemiologic association between exposure to gadolinium containing contrast material and development of the disease.


2011 ◽  
Vol 399-401 ◽  
pp. 3-7 ◽  
Author(s):  
Chun Wei Wang ◽  
Zhuo Qiang Mo ◽  
Jian Jiang Tang

The microstructure and phase structure of AlCoCrTiNiCu_x which are made of six class transition metal elements have been studied in this paper. The results indicated that the change process of microcosmic crystal-structure of the five group high entropy alloy of AlCoCrTiNiCu_x system is transformed from FCC(mainly)+ BCC crystal structure (X=0.5、X=0.8) to FCC+BCC+ primary lattice crystal structure (X=1.0、X=1.2), finally, the crystal-structure turn into BCC+ primary lattice crystal structure as the content of Cu further increasing.


2020 ◽  
Vol 27 (25) ◽  
pp. 31872-31883
Author(s):  
Caixia Yan ◽  
Yanru Sheng ◽  
Min Ju ◽  
Cong Ding ◽  
Qian Li ◽  
...  

1995 ◽  
Vol 4 (2-3) ◽  
pp. 241-245 ◽  
Author(s):  
A. Aoudia ◽  
E. Rzepka ◽  
A. Lusson ◽  
A. Tromson-Carli ◽  
D. Schneider ◽  
...  

Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Sign in / Sign up

Export Citation Format

Share Document