Steel Tube Cross Section Geometry Measurement by 3D Scanning

Author(s):  
Álvaro Segura ◽  
Alejandro García-Alonso
2011 ◽  
Vol 462-463 ◽  
pp. 265-270
Author(s):  
Xiu Gen Jiang ◽  
Ning Xu ◽  
Xu Dong Shi ◽  
Yu Huan Wu ◽  
Xing Hua Chen ◽  
...  

The performance of the casing-plug joint, including load carrying capacity, stiffness, failure modes, and its influence factors of the casing tubes set inside and outside of the main tubes are analyzed by simulating square steel tube casing-plug joints structures with ANSYS software in this paper. The formulas of the optimum l/L for the joints with the size of the main tube cross-section 200mm× 200mm are given in this paper.


2012 ◽  
Vol 27 (2) ◽  
pp. 264-269 ◽  
Author(s):  
Christian Lorbach ◽  
Ulrich Hirn ◽  
Johannes Kritzinger ◽  
Wolfgang Bauer

Abstract We present a method for 3D measurement of fiber cross sectional morphology from handsheets. An automated procedure is used to acquire 3D datasets of fiber cross sectional images using an automated microtome and light microscopy. The fiber cross section geometry is extracted using digital image analysis. Simple sample preparation and highly automated image acquisition and image analysis are providing an efficient tool to analyze large samples. It is demonstrated that if fibers are tilted towards the image plane the images of fiber cross sections are always larger than the true fiber cross section geometry. In our analysis the tilting angles of the fibers to the image plane are measured. The resulting fiber cross sectional images are distorted to compensate the error due to fiber tilt, restoring the true fiber cross sectional shape. We use an approximated correction, the paper provides error estimates of the approximation. Measurement results for fiber wall thickness, fiber coarseness and fiber collapse are presented for one hardwood and one softwood pulp.


2021 ◽  
Vol 11 (9) ◽  
pp. 4043
Author(s):  
Aleksandar Landović ◽  
Miroslav Bešević

Experimental research on axially compressed columns made from reinforced concrete (RC) and RC columns strengthened with a steel jacket and additional fill concrete is presented in this paper. A premade squared cross-section RC column was placed inside a steel tube, and then the space between the column and the tube was filled with additional concrete. A total of fourteen stub axially compressed columns, including nine strengthened specimens and five plain reinforced concrete specimens, were experimentally tested. The main parameter that was varied in the experiment was the compressive strength of the filler concrete. Three different concrete compression strength classes were used. Test results showed that all three cross-section parts (the core column, the fill, and the steel jacket) worked together in the force-carrying process through all load levels, even if only the basic RC column was loaded. The strengthened columns exhibited pronounced ductile behavior compared to the plain RC columns. The influence of the test parameters on the axial compressive strength was investigated. In addition, the specimen failure modes, strain development, and load vs. deformation relations were registered. The applicability of three different design codes to predict the axial bearing capacity of the strengthened columns was also investigated.


2012 ◽  
Vol 223 (6) ◽  
pp. 1119-1136 ◽  
Author(s):  
Jan Awrejcewicz ◽  
Valeriy Storozhev ◽  
Vladimir Puzyrev

Author(s):  
Hareesh K. R. Kommepalli ◽  
Andrew D. Hirsh ◽  
Christopher D. Rahn ◽  
Srinivas A. Tadigadapa

This paper introduces a novel T-beam actuator fabricated by a piezoelectric MEMS fabrication process. ICP-RIE etching from the front and back of a bulk PZT chip is used to produce stair stepped structures through the thickness with complex inplane shapes. Masked electrode deposition creates active and passive regions in the PZT structure. With a T-shaped crosssection, and bottom and top flange and web electrodes, a cantilevered beam can bend in-plane and out-of-plane with bimorph actuation in both directions. One of these T-beam actuators is fabricated and experimentally tested. An experimentally validated model predicts that the cross-section geometry can be optimized to produce higher displacement and blocking force.


2021 ◽  
Author(s):  
Nadine McQuarrie ◽  
Mary Braza

<div> <p>One of the first order questions regarding a cross-section representation through a fold-thrust belt (FTB) is usually “how unique is this geometrical interpretation of the subsurface?”  The proposed geometry influences perceptions of inherited structures, decollement horizons, and both rheological and kinematic behavior.  Balanced cross sections were developed as a tool to produce more accurate and thus more predictive geological cross sections.  While balanced cross sections provide models of subsurface geometry that can reproduce the mapped surface geology, they are non-unique, opening the possibility that different geometries and kinematics may be able to satisfy the same set of observations. The most non-unique aspects of cross sections are: (1) the geometry of structures that is not seen at the surface, and (2) the sequence of thrust faulting.  We posit that integrating sequentially restored cross sections with thermokinematic models that calculate the resulting subsurface thermal field and predicted cooling ages of rocks at the surface provides a valuable means to assess the viability of proposed geometry and kinematics.  Mineral cooling ages in compressional settings are the outcome of surface uplift and the resulting focused erosion.  As such they are most sensitive to the vertical component of the kinematic field imparted by ramps and surface breaking faults in sequential reconstructions of FTB.  Because balanced cross sections require that the lengths and locations of hanging-wall and footwall ramps match, they provide a template of the ways in which the location and magnitude of ramps in the basal décollement have evolved with time.  Arunachal Pradesh in the eastern Himalayas is an ideal place to look at the sensitivity of cooling ages to different cross section geometries and kinematic models. Recent studies from this portion of the Himalayan FTB include both a suite of different cross section geometries and a robust bedrock thermochronology dataset. The multiple published cross-sections differ in the details of geometry, implied amounts of shortening, kinematic history, and thus exhumation pathways. Published cooling ages data show older ages (6-10 Ma AFT, 12-14 Ma ZFT) in the frontal portions of the FTB and significantly younger ages (2-5 Ma AFT, 6-8 Ma ZFT) in the hinterland. These ages are best reproduced with kinematic sequence that involves early forward propagation of the FTB from 14-10 Ma.  The early propagation combined with young hinterland cooling ages require several periods of out-of-sequence faulting. Out-of-sequence faults are concentrated in two windows of time (10-8 Ma and 7-5 Ma) that show systematic northward reactivation of faults.  Quantitative integration of cross section geometry, kinematics and cooling ages require notably more complicated kinematic and exhumation pathways than are typically assumed with a simple in-sequence model of cross section deformation.  While also non-unique, the updated cross section geometry and kinematics highlight components of geometry, deformation and exhumation that must be included in any valid cross section model for this portion of the eastern Himalaya.</p> </div>


Author(s):  
Jun Fang ◽  
Shiqiang Lu ◽  
Kelu Wang ◽  
Zhengjun Yao

In order to achieve the precision bending deformation, the effects of process parameters on springback behaviors should be clarified preliminarily. Taking the 21-6-9 high-strength stainless steel tube of 15.88 mm × 0.84 mm (outer diameter × wall thickness) as the objective, the multi-parameter sensitivity analysis and three-dimensional finite element numerical simulation are conducted to address the effects of process parameters on the springback behaviors in 21-6-9 high-strength stainless steel tube numerical control bending. The results show that (1) springback increases with the increasing of the clearance between tube and mandrel Cm, the friction coefficient between tube and mandrel fm, the friction coefficient between tube and bending die fb, or with the decreasing of the mandrel extension length e, while the springback first increases and then remains unchanged with the increasing of the clearance between tube and bending die Cb. (2) The sensitivity of springback radius to process parameters is larger than that of springback angle. And the sensitivity of springback to process parameters from high to low are e, Cb, Cm, fb and fm. (3) The variation rules of the cross section deformation after springback with different Cm, Cb, fm, fb and e are similar to that before springback. But under same process parameters, the relative difference of the most measurement section is more than 20% and some even more than 70% before and after springback, and a platform deforming characteristics of the cross section deformation is shown after springback.


2005 ◽  
Vol 483-485 ◽  
pp. 225-228 ◽  
Author(s):  
Didier Chaussende ◽  
Laurence Latu-Romain ◽  
Laurent Auvray ◽  
M. Ucar ◽  
Michel Pons ◽  
...  

Thick (111) oriented β-SiC layers have been grown by hetero-epitaxy on a (0001) a-SiC substrate with the Continuous Feed-Physical Vapour Transport (CF-PVT) method. The growth rate was 68 µm/h at a pressure of 2 torr and a temperature of 1950°C. The nucleation step of the β-SiC layer during the heating up of the process was studied in order to manage first the a to b heteropolytypic transition and second the selection of the b-SiC orientation. With a adapted seeding stage, we grew a 0.4mm thick layer almost free of Double Positioning Boundaries on a 30mm diameter sample. First observations of the layer by cross-polarised optical Microscopy are presented both in planar view and in cross section geometry.


Sign in / Sign up

Export Citation Format

Share Document