Data Management and Visualization Using Big Data Analytics

Author(s):  
Muhammad Adeel Mannan ◽  
Saboohi Mehmood ◽  
Muhammad Shafiq ◽  
Aqeel-ur-Rehman
2021 ◽  
Vol 29 (1) ◽  
pp. 177-185
Author(s):  
Gunasekaran Manogaran ◽  
P. Mohamed Shakeel ◽  
S. Baskar ◽  
Ching-Hsien Hsu ◽  
Seifedine Nimer Kadry ◽  
...  

Author(s):  
Shweta Kumari

n a business enterprise there is an enormous amount of data generated or processed daily through different data points. It is increasing day by day. It is tough to handle it through traditional applications like excel or any other tools. So, big data analytics and environment may be helpful in the current scenario and the situation discussed above. This paper discussed the big data management ways with the impact of computational methodologies. It also covers the applicability domains and areas. It explores the computational methods applicability scenario and their conceptual design based on the previous literature. Machine learning, artificial intelligence and data mining techniques have been discussed for the same environment based on the related study.


Author(s):  
P. Venkateswara Rao ◽  
A. Ramamohan Reddy ◽  
V. Sucharita

In the field of Aquaculture with the help of digital advancements huge amount of data is constantly produced for which the data of the aquaculture has entered in the big data world. The requirement for data management and analytics model is increased as the development progresses. Therefore, all the data cannot be stored on single machine. There is need for solution that stores and analyzes huge amounts of data which is nothing but Big Data. In this chapter a framework is developed that provides a solution for shrimp disease by using historical data based on Hive and Hadoop. The data regarding shrimps is acquired from different sources like aquaculture websites, various reports of laboratory etc. The noise is removed after the collection of data from various sources. Data is to be uploaded on HDFS after normalization is done and is to be put in a file that supports Hive. Finally classified data will be located in particular place. Based on the features extracted from aquaculture data, HiveQL can be used to analyze shrimp diseases symptoms.


2020 ◽  
Vol 37 (4) ◽  
pp. 1-5
Author(s):  
Nove E. Variant Anna ◽  
Endang Fitriyah Mannan

Purpose The purpose of this paper is to analyse the publication of big data in the library from Scopus database by looking at the writing time period of the papers, author's country, the most frequently occurring keywords, the article theme, the journal publisher and the group of keywords in the big data article. The methodology used in this study is a quantitative approach by extracting data from Scopus database publications with the keywords “big data” and “library” in May 2019. The collected data was analysed using Voxviewer software to show the keywords or terms. The results of the study stated that articles on big data have appeared since 2012 and are increasing in number every year. The big data authors are mostly from China and America. Keywords that often appear are based on the results of terminology visualization are including, “big data”, “libraries”, “library”, “data handling”, “data mining”, “university libraries”, “digital libraries”, “academic libraries”, “big data applications” and “data management”. It can be concluded that the number of publications related to big data in the library is still small; there are still many gaps that need to be researched on the topic. The results of the research can be used by libraries in using big data for the development of library innovation. Design/methodology/approach The Scopus database was accessed on 24 May 2019 by using the keyword “big data” and “library” in the search box. The authors only include papers, which title contain of big data in library. There were 74 papers, however, 1 article was dropped because of it not meeting the criteria (affiliation and abstract were not available). The papers consist of journal articles, conference papers, book chapters, editorial and review. Then the data were extracted into excel and analysed as follows (by the year, by the author/s’s country, by the theme and by the publisher). Following that the collected data were analysed using VOX viewer software to see the relationship between big data terminology and library, terminology clustering, keywords that often appear, countries that publish big data, number of big data authors, year of publication and name of journals that publish big data and library articles (Alagu and Thanuskodi, 2019). Findings It can be concluded that the implementation of big data in libraries is still in an early stage, it is shown from the limited number of practical implementation of big data analytics in library. Not many libraries that use big data to support innovation and services since there were lack of librarian skills of big data analytics. The library manager’s view of big data is still not necessary to do. It is suggested for academic libraries to start their adoption of big data analytics to support library services especially research data. To do so, librarians can enhance their skills and knowledge by following some training in big data analytics or research data management. The information technology infrastructure also needs to be upgraded since big data need big IT capacity. Finally, the big data management policy should be made to ensure the implementation goes well. Originality/value This paper discovers the adoption and implementation of big data in library, many papers talk big data in business and technology context. This is offering new idea for many libraries especially academic library about the adoption of big data to support their services. They can adopt the big data analytics technology and technique that suitable for their library.


2021 ◽  
Vol 13 (23) ◽  
pp. 13322
Author(s):  
Vinoth Kumar Ponnusamy ◽  
Padmanathan Kasinathan ◽  
Rajvikram Madurai Elavarasan ◽  
Vinoth Ramanathan ◽  
Ranjith Kumar Anandan ◽  
...  

The role of energy is cardinal for achieving the Sustainable Development Goals (SDGs) through the enhancement and modernization of energy generation and management practices. The smart grid enables efficient communication between utilities and the end- users, and enhances the user experience by monitoring and controlling the energy transmission. The smart grid deals with an enormous amount of energy data, and the absence of proper techniques for data collection, processing, monitoring and decision-making ultimately makes the system ineffective. Big data analytics, in association with the smart grid, enable better grid visualization and contribute toward the attainment of sustainability. The current research work deals with the achievement of sustainability in the smart grid and efficient data management using big data analytics, that has social, economic, technical and political impacts. This study provides clear insights into energy data generated in the grid and the possibilities of energy theft affecting the sustainable future. The paper provides insights about the importance of big data analytics, with their effects on the smart grids’ performance towards the achievement of SDGs. The work highlights efficient real-time energy data management involving artificial intelligence and machine learning for a better future, to short out the effects of the conventional smart grid without big data analytics. Finally, the work discusses the challenges and future directions to improve smart grid technologies with big data analytics in action.


Author(s):  
Arushi Jain ◽  
Vishal Bhatnagar

The word big data analytics have been increased substantially these days, one of the most prominent reasons is to predict the behavior of the customer purchase. This analysis helps to understand what customer wants to purchase, where they want to go, what they want to eat etc. So that valuable insights can be converted into actions. The knowledge thus gained helps in understanding the needs of every customer individually so that it becomes easier to do the business with them. This is the revolutionary change to build a customer-centric business. To build a customer centric business an organization must be observant about what customer is doing, must keep a record about what customer is purchasing and lastly should discover the insights to maximum the profit for customer. In this chapter we discussed about various approaches to big data management and the use cases where these approaches can be applied successfully.


Author(s):  
Shaila S. G. ◽  
Monish L. ◽  
Lavanya S. ◽  
Sowmya H. D. ◽  
Divya K.

The new trending technologies such as big data and cloud computing are in line with social media applications due to their fast growth and usage. The big data characteristic makes data management challenging. The term big data refers to an immense collection of both organised and unorganised data from various sources, and nowadays, cloud computing supports in storing and processing such a huge data. Analytics are done on huge data that helps decision makers to take decisions. However, merging two conflicting design principles brings a challenge, but it has its own advantage in business and various fields. Big data analytics in the cloud places rigorous demands on networks, storage, and servers. The chapter discusses the importance of cloud platform for big data, importance of analytics in cloud and gives detail insight about the trends and techniques adopted for cloud analytics.


Author(s):  
Sandro Fiore ◽  
Cosimo Palazzo ◽  
Alessandro D'Anca ◽  
Ian Foster ◽  
Dean N. Williams ◽  
...  

Author(s):  
Kijpokin Kasemsap

The objective of this article is to provide the advanced issues and approaches of big data management. The literature review indicates the overview of big data management; the aspects of Big Data Analytics (BDA); the importance of big data management; the methods for big data management; the privacy and security concerns of big data management; and the big data management in the health care industry. Organizations that have been successful in working with effective big data management have accomplished this issue using data to help make sense of the information. The volume of data that companies are able to gather about customers and market conditions can provide business leaders with insights into new revenue and business opportunities, presuming they can spot the opportunities in vast amounts of data. The literature review analysis provides both practitioners and researchers an important understanding about big data management in modern organizations.


Author(s):  
Vellingiri Jayagopal ◽  
Basser K. K.

The internet is creating 2.5 quintillion bytes of data, and according to the statistics, the percentage of data that has been generated from last two years is 90%. This data comes from many industries like climate information, social media sites, digital images and videos, and purchase transactions. This data is big data. Big data is the data that exceeds storage and processing capacity of conventional database systems. Data in today's world (big data) is usually unstructured and qualitative in nature and can be used for various applications like sentiment analysis, increasing business, etc. About 80% of data captured today is unstructured. All this data is also big data.


Sign in / Sign up

Export Citation Format

Share Document