Inorganic Fertilizers: Necessity to Achieve Global Zero Hunger Target

Author(s):  
Muhammad Saqib ◽  
Rabia Yasin ◽  
Javaid Akhtar
Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1427
Author(s):  
Gulen Ozyazici

Environmental contamination and the excessive use of inorganic fertilizers resulting in stagnant yields of field crops which necessitate the utilization of combined fertilization approach under changing climatic conditions. Current study was aimed to clarify the influence of several fertilizer sources (chemical, organic, organomineral fertilizers) on yield and quality of coriander (Coriandrum sativum L.). The results revealed that the fertilizer sources significantly affected the yield of coriander cultivars. The absence of “Year x Variety x Fertilizer Type” interactions for any of the noted parameters signaled that the detected “Variety x Fertilizer Type” interactions were constant regardless of the year factor. The recorded values of traits according to fertilizer sources different for the plant height from 61.85 to 69.67 cm, number of branches from 5.98 to 7.71 (piece/plant), number of umbels per the main umbel from 5.62 to 7.18 pieces, seed yield from 1.06 to 1.66 t/ha, the biological yield from 4.29 to 5.70 t ha−1, harvest index from 25.29 to 29.41%, essential oil ratio from 0.29 to 0.33%, and essential oil yield from 3.1 to 5.6 L ha−1. Erbaa variety was observed to be superior over the rest of the varieties producing the maximum values of 6.5 L ha−1 of essential oil, 0.36% essential oil content, 30.9% harvest index, 1.81 t/ha seed yield, and 5.9 t ha−1 biological yield with the treatment of chemical fertilizers.


2021 ◽  
Vol 11 (13) ◽  
pp. 5911
Author(s):  
Vanesa Martos ◽  
Ali Ahmad ◽  
Pedro Cartujo ◽  
Javier Ordoñez

Timely and reliable information about crop management, production, and yield is considered of great utility by stakeholders (e.g., national and international authorities, farmers, commercial units, etc.) to ensure food safety and security. By 2050, according to Food and Agriculture Organization (FAO) estimates, around 70% more production of agricultural products will be needed to fulfil the demands of the world population. Likewise, to meet the Sustainable Development Goals (SDGs), especially the second goal of “zero hunger”, potential technologies like remote sensing (RS) need to be efficiently integrated into agriculture. The application of RS is indispensable today for a highly productive and sustainable agriculture. Therefore, the present study draws a general overview of RS technology with a special focus on the principal platforms of this technology, i.e., satellites and remotely piloted aircrafts (RPAs), and the sensors used, in relation to the 5th industrial revolution. Nevertheless, since 1957, RS technology has found applications, through the use of satellite imagery, in agriculture, which was later enriched by the incorporation of remotely piloted aircrafts (RPAs), which is further pushing the boundaries of proficiency through the upgrading of sensors capable of higher spectral, spatial, and temporal resolutions. More prominently, wireless sensor technologies (WST) have streamlined real time information acquisition and programming for respective measures. Improved algorithms and sensors can, not only add significant value to crop data acquisition, but can also devise simulations on yield, harvesting and irrigation periods, metrological data, etc., by making use of cloud computing. The RS technology generates huge sets of data that necessitate the incorporation of artificial intelligence (AI) and big data to extract useful products, thereby augmenting the adeptness and efficiency of agriculture to ensure its sustainability. These technologies have made the orientation of current research towards the estimation of plant physiological traits rather than the structural parameters possible. Futuristic approaches for benefiting from these cutting-edge technologies are discussed in this study. This study can be helpful for researchers, academics, and young students aspiring to play a role in the achievement of sustainable agriculture.


2021 ◽  
Vol 284 ◽  
pp. 112032
Author(s):  
Yuchen Zhang ◽  
Rebecca K. Runting ◽  
Edward L. Webb ◽  
David P. Edwards ◽  
L. Roman Carrasco

Humanities ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 48
Author(s):  
Esteve Giraud

Urban agriculture is often advanced as a sustainable solution to feed a growing urban population, offering a number of benefits: improved fresh food access, CO2 absorption, social justice and social cohesion among others. Going beyond these direct tangible/objective benefits from urban agriculture, in this paper we ask: How can growing food in the cities teach us about taking care of each other and the natural environment? We use the example of urban food autonomy movements to discuss the transformative potential of a grassroots-led initiative promoting permaculture, which is anchored in three “ethics”: care for the earth, care for the people, and fair share. Through examining the philosophical underpinnings of “autonomy” and “care”, we explore how urban food autonomy initiatives can enable the development of an ethics of care, especially using permaculture inspirations. Our theoretical review and case analysis reveal that “autonomy” can never be achieved without “care” and that these are co-dependent outcomes. The urban food autonomy initiatives are directly relevant for the achievement of the three of the UN’s 17 Sustainable Development Goals: “Zero Hunger,” “Life on Land” and “Climate Action”, and contribute to a culture of care. Indeed, urban agriculture can act as a powerful education platform for the engagement of diverse stakeholders while also supporting a collective transformation of values.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 835
Author(s):  
Onofrio Davide Palmitessa ◽  
Marco Antonio Pantaleo ◽  
Pietro Santamaria

High-tech greenhouses and artificial light applications aim to improve food production, in line with one of the sustainable development goals of the UN Agenda 2030, namely, “zero hunger”. In the past, the incandescent lamps have been used for supplementary lighting (SL) at higher latitudes to increase greenhouse production during the dark season. Light-emitting diodes (LED) have been replacing gas discharge and incandescent lamps, and their development is expanding SL applications in different agricultural scenarios (e.g., urban farming, middle latitudes). In fact, recent research on LED applications in Mediterranean greenhouses have produced encouraging results. Since middle latitudes have a higher daily light integral (DLI) than higher latitudes in the dark season and climate conditions influence the installed power load of greenhouses, LED installation and management in Mediterranean greenhouses should be different and less expensive in terms of investment and energy consumption. Accordingly, the aim of this review is to outline the state of the art in LED applications and development, with a focus on latitude-related requirements. Tomato was used as a representative crop.


2021 ◽  
Vol 13 (11) ◽  
pp. 6503
Author(s):  
Yu Peng ◽  
Hubert Hirwa ◽  
Qiuying Zhang ◽  
Guoqin Wang ◽  
Fadong Li

Given the impact of COVID-19 and the desert locust plague, the Ethiopian food security issue has once again received widespread attention. Its food crisis requires comprehensive and systematic research to achieve the United Nations Sustainable Development Goal of zero hunger. This review discusses the current situation and the causes of food security in Ethiopia. We focus on the challenges in the food security assessment field. The article lists seven typical causes of food insecurity and three roots of food security in Ethiopia. Long-term food security assessment and a comprehensive understanding and manageability for food security causes are considered as the main existing research challenges. Climate-resilient management, water management, and long-term ecosystem network monitoring and data mining are suggested as potential roadmap for future research.


Sign in / Sign up

Export Citation Format

Share Document