Parallel Numerical Airplane Wing Design

Author(s):  
J. K. Axmann ◽  
M. Hadenfeld ◽  
O. Frommann
Keyword(s):  
1919 ◽  
Vol 88 (2291supp) ◽  
pp. 367-367
Author(s):  
Walter C. Durfee
Keyword(s):  

2012 ◽  
Vol 9 (2) ◽  
Author(s):  
I G.N. Sudira

Success indicator in airplane design process is depended on success or not in wing design process. Wing design process was supported by many design variable and the final result was compromise one from many scientific science or specialist. The first step in airplane wing design after design requirement & objective (DR&O) was defined, is determining wing planform through parametric study. Parametric study was conducted to make sure that all design parameters have been considered especially for aerodynamic and structural aspect. This paper discuses the influence of glove and yehudi changes and also apex location movement with respect to aerodynamic characteristic of the wing. Additional of the glove was intended to compensate yehudi existent due to structural aspect mainly for landing gear placement. Disadvantage of aerodynamics aspect due to yehudi existent is expected will be overcome by additional of glove. Apex location is also important parameter to control the shape of pressure coeffient of wing profile. Apex location can be moved according to sensitivity of designer to achieve design target. For the whole, it can be said that glove and yehudi and also apex location can be isolated its influence to major variable design namely to wing profile pressure distribution. The computer program used in this analysis is integration of the program for wing geometry generation, paneling process and computational fluid dynamic code (CFD), in this case VSAERO, and by author it is called NWDU. Keywords: NWDU, VSAERO, Glove, Yehudi, Apex


2020 ◽  
Vol 21 (6) ◽  
pp. 621
Author(s):  
Veerapathiran Thangaraj Gopinathan ◽  
John Bruce Ralphin Rose ◽  
Mohanram Surya

Aerodynamic efficiency of an airplane wing can be improved either by increasing its lift generation tendency or by reducing the drag. Recently, Bio-inspired designs have been received greater attention for the geometric modifications of airplane wings. One of the bio-inspired designs contains sinusoidal Humpback Whale (HW) tubercles, i.e., protuberances exist at the wing leading edge (LE). The tubercles have excellent flow control characteristics at low Reynolds numbers. The present work describes about the effect of tubercles on swept back wing performance at various Angle of Attack (AoA). NACA 0015 and NACA 4415 airfoils are used for swept back wing design with sweep angle about 30°. The modified wings (HUMP 0015 A, HUMP 0015 B, HUMP 4415 A, HUMP 4415 B) are designed with two amplitude to wavelength ratios (η) of 0.1 & 0.24 for the performance analysis. It is a novel effort to analyze the tubercle vortices along the span that induce additional flow energy especially, behind the tubercles peak and trough region. Subsequently, Co-efficient of Lift (CL), Co-efficient of Drag (CD) and boundary layer pressure gradients also predicted for modified and baseline (smooth LE) models in the pre & post-stall regimes. It was observed that the tubercles increase the performance of swept back wings by the enhanced CL/CD ratio in the pre-stall AoA region. Interestingly, the flow separation region behind the centerline of tubercles and formation of Laminar Separation Bubbles (LSB) were asymmetric because of the sweep.


2011 ◽  
Vol 42 (1) ◽  
pp. 119-133
Author(s):  
V. A. Komarov ◽  
A. V. Boldyrev

Author(s):  
Shigeru OBAYASHI ◽  
Shinkyu JEONG ◽  
Kazuhisa CHIBA ◽  
Hiroyuki MORINO

2013 ◽  
Vol 562-565 ◽  
pp. 436-440
Author(s):  
Chao Wei Si ◽  
Guo Wei Han ◽  
Jin Ning ◽  
Wei Wei Zhong ◽  
Fu Hua Yang

A new kind of wind sensor made up of MEMS resonators is designed in the paper capable of sensing the lift, the resistance and the turbulence of airplane wings by mounting on the surface. The designed wind sensor is made up of four MEMS wind pressure gauges fixed around a square wind resistance block which used to block the wind to change the wind pressure on the surface, and the change of wind pressure is detected by MEMS wind pressure gauges to reveal the air condition on the surface of the airplane wings. As known, a MEMS resonator is a second-order resonant system whose damping factor is mainly dependent on the air pressure, and the characteristic is often used to detecting the airtightness of a sealed chamber for the damping factor is sensitive under high vacuum, while a MEMS resonator with the damping factor sensitive at atmospheric pressure is designed in this paper for sensing wind pressure change, and the MEMS resonator is manufactured on SOI substrates with deep reactive ion etching technology. Also relations between the wind pressure change and the wind speed around a block at atmosphere is revealed by finite element simulation. Compared to traditional wind sensors such as anemometers and Venturi tubes, the designed MEMS wind sensor with a very small size is suitable to mount on different zones of a wing with a large amount to monitor the air condition and have less influence on air flow.


1997 ◽  
Author(s):  
Changho Nam ◽  
Youdan Kim ◽  
Jeffrey Layton ◽  
Changho Nam ◽  
Youdan Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document