scholarly journals PENGARUH PENAMBAHAN GLOVE DAN PENGURANGAN YEHUDI SERTA PERGESERAN LOKASI APEX TERHADAP KARAKTERISTIK AERODINAMIKA SAYAP PESAWAT TERBANG

2012 ◽  
Vol 9 (2) ◽  
Author(s):  
I G.N. Sudira

Success indicator in airplane design process is depended on success or not in wing design process. Wing design process was supported by many design variable and the final result was compromise one from many scientific science or specialist. The first step in airplane wing design after design requirement & objective (DR&O) was defined, is determining wing planform through parametric study. Parametric study was conducted to make sure that all design parameters have been considered especially for aerodynamic and structural aspect. This paper discuses the influence of glove and yehudi changes and also apex location movement with respect to aerodynamic characteristic of the wing. Additional of the glove was intended to compensate yehudi existent due to structural aspect mainly for landing gear placement. Disadvantage of aerodynamics aspect due to yehudi existent is expected will be overcome by additional of glove. Apex location is also important parameter to control the shape of pressure coeffient of wing profile. Apex location can be moved according to sensitivity of designer to achieve design target. For the whole, it can be said that glove and yehudi and also apex location can be isolated its influence to major variable design namely to wing profile pressure distribution. The computer program used in this analysis is integration of the program for wing geometry generation, paneling process and computational fluid dynamic code (CFD), in this case VSAERO, and by author it is called NWDU. Keywords: NWDU, VSAERO, Glove, Yehudi, Apex

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Farideh Haghighi ◽  
Zahra Talebpour ◽  
Amir Sanati-Nezhad

AbstractFlow distributor located at the beginning of the micromachined pillar array column (PAC) has significant roles in uniform distribution of flow through separation channels and thus separation efficiency. Chip manufacturing artifacts, contaminated solvents, and complex matrix of samples may contribute to clogging of the microfabricated channels, affect the distribution of the sample, and alter the performance of both natural and engineered systems. An even fluid distribution must be achieved cross-sectionally through careful design of flow distributors and minimizing the sensitivity to clogging in order to reach satisfactory separation efficiency. Given the difficulty to investigate experimentally a high number of clogging conditions and geometries, this work exploits a computational fluid dynamic model to investigate the effect of various design parameters on the performance of flow distributors in equally spreading the flow along the separation channels in the presence of different degrees of clogging. An array of radially elongated hexagonal pillars was selected for the separation channel (column). The design parameters include channel width, distributor width, aspect ratio of the pillars, and number of contact zone rows. The performance of known flow distributors, including bifurcating (BF), radially interconnected (RI), and recently introduced mixed-mode (MMI) in addition to two new distributors designed in this work (MMII and MMIII) were investigated in terms of mean elution time, volumetric variance, asymmetry factors, and pressure drop between the inlet and the monitor line for each design. The results show that except for pressure drop, the channel width and aspect ratio of the pillars has no significant influence on flow distribution pattern in non-clogged distributors. However, the behavior of flow distributors in response to clogging was found to be dependent on width of the channels. Also increasing the distributor width and number of contact zone rows after the first splitting stage showed no improvement in the ability to alleviate the clogging. MMI distributor with the channel width of 3 µm, aspect ratio of the pillars equal to 20, number of exits of 8, and number of contact zones of 3 exhibited the highest stability and minimum sensitivity to different degrees of clogging.


1965 ◽  
Vol 9 (02) ◽  
pp. 56-65
Author(s):  
Joseph L. Neuringer ◽  
Eugene Migotsky ◽  
James H. Turner ◽  
Robert M. Haag

In Part 3, the nature of the electromechanically induced motions inside the compressor both of the fluid conductor and of the pumped fluid when the electromechanical coupling is weak, i.e., in the limit of small magnetic Reynolds number, is investigated. The analysis predicts the development of a constant pressure gradient in the pumped fluid when the condition is imposed that the time-average axial mass flow across the conducting fluid annulus is zero. In Part 4, a preliminary feasibility study is made to determine whether the induction compressor has the potential to provide the pressure rise required to propel large and small undersea craft by means of jet propulsion systems for reasonable power and current-sheet inputs. Also determined here are the geometric scaling laws for the appropriate operating and design parameters.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Kenneth Allen ◽  
Lukas Heller ◽  
Theodor von Backström

A major advantage of concentrating solar power (CSP) plants is their ability to store thermal energy at a cost far lower than that of current battery technologies. A recent techno-economic study found that packed rock bed thermal storage systems can be constructed with capital costs of less than 10 United States dollar (USD)/kWht, significantly cheaper than the two-tank molten salt thermal storage currently used in CSP plants (about 22–30 USD/kWht). However, little work has been published on determining optimum rock bed design parameters in the context of a CSP plant. The parametric study in this paper is intended to provide an overview of the bed flow lengths, particle sizes, mass fluxes, and Biot numbers which are expected to minimize the levelized cost of electricity (LCOE) for a central receiver CSP plant with a nominal storage capacity of 12 h. The findings show that rock diameters of 20–25 mm will usually give LCOE values at or very close to the minimum LCOE for the combined rock bed and CSP plant. Biot numbers between 0.1 and 0.2 are shown to have little influence on the position of the optimum (with respect to particle diameter) for all practical purposes. Optimum bed lengths are dependent on the Biot number and range between 3 and 10 m for a particle diameter of 20 mm.


2018 ◽  
Vol 36 (4) ◽  
pp. 361-372 ◽  
Author(s):  
Afshin Khoshand ◽  
Ali Fathi ◽  
Milad Zoghi ◽  
Hamidreza Kamalan

One of the most common and economical methods for waste disposal is landfilling. The landfill cover system is one of the main components of landfills which prevents waste exposure to the environment by creating a barrier between the waste and the surrounding environment. The stability and integrity of the landfill cover system is a fundamental part of the design, construction, and maintenance of landfills. A reinforced tapered landfill cover system can be considered as a practical method for improving its stability; however, the simultaneous effects of seismic and seepage forces in the reinforced tapered landfill cover system have not been studied. The current paper provides a solution based on the limit equilibrium method in order to evaluate the stability of a reinforced tapered landfill cover system under seismic and seepage (both horizontal and parallel seepage force patterns) loading conditions. The proposed analytical approach is applied to different design cases through parametric study and the obtained results are compared to those derived from literature. Parametric study is performed to illustrate the sensitivity of the safety factor (FS) to the different design parameters. The obtained results reveal that parameters which describe the geometry have limited effects on the stability of the landfill cover system in comparison to the rest of the studied design parameters. Moreover, the comparisons between the derived results and available methods demonstrate good agreement between obtained findings with those reported in the literature.


1988 ◽  
Vol 1 (21) ◽  
pp. 176
Author(s):  
C. David Anglin ◽  
William F. Baird ◽  
Etienne P.D. Mansard ◽  
R. Douglas Scott ◽  
David J. Turcke

There is a general lack of knowledge regarding the nature and magnitude of loads acting on armour units used for the protection of rubblemound coastal structures. Thus, a comprehensive design procedure incorporating both the hydraulic stability and the structural integrity of the armour units does not exist. This paper presents the results of a detailed parametric study of the structural response of armour units to wave-induced loading in a physical breakwater model. The effect of the following design parameters is investigated: breakwater slope, armour unit location, wave period and wave height. This research has made a number of significant contributions towards the development of a comprehensive design procedure for concrete armour units. It has identified a linear relationship between the wave-induced stress in the armour units and the incident wave height. In addition, it has shown that the conditional probability of waveinduced stress given wave height can be estimated by a log-normal distribution. Finally, a preliminary design chart has been developed which incorporates both the structural integrity and the hydraulic stability of the armour units.


2018 ◽  
Vol 223 ◽  
pp. 01009
Author(s):  
Auðunn Herjólfsson ◽  
Haraldur Helgason ◽  
Sindri S. Ingvason ◽  
þráinn þórarinsson ◽  
Joseph Timothy Foley

With the explosion of smart devices, tablets can currently be found everywhere. From schools to kiosks to watching movies in bed, these devices are prevalent everywhere in modern life. The problem with watching movies in bed using tablets is the necessity of hand usage. The market currently holds a few products that attempt to solve this, but none truly frees the user, allowing them hands-free usage with an easy exit of the bed. In this paper, we will describe a design which, utilizing axiomatic design, will out-perform anything currently existing in the same field, by giving a stable viewing experience while fitting to nearly any bed or sofa. Axiomatic Design ensured a comprehensive design process by ensuring customer needs were transformed into carefully thought out functional requirements and design parameters while maintaining modularity.


Sign in / Sign up

Export Citation Format

Share Document