Analyzing the Performance of Genetically Designed Short-Term Traffic Prediction Models Based on Road Types and Functional Classes

Author(s):  
Ming Zhong ◽  
Satish Sharma ◽  
Pawan Lingras
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Rusul L. Abduljabbar ◽  
Hussein Dia ◽  
Pei-Wei Tsai

This paper presents the development and evaluation of short-term traffic prediction models using unidirectional and bidirectional deep learning long short-term memory (LSTM) neural networks. The unidirectional LSTM (Uni-LSTM) model provides high performance through its ability to recognize longer sequences of traffic time series data. In this work, Uni-LSTM is extended to bidirectional LSTM (BiLSTM) networks which train the input data twice through forward and backward directions. The paper presents a comparative evaluation of the two models for short-term speed and traffic flow prediction using a common dataset of field observations collected from multiple freeways in Australia. The results showed BiLSTM performed better for variable prediction horizons for both speed and flow. Stacked and mixed Uni-LSTM and BiLSTM models were also investigated for 15-minute prediction horizons resulting in improved accuracy when using 4-layer BiLSTM networks. The optimized 4-layer BiLSTM model was then calibrated and validated for multiple prediction horizons using data from three different freeways. The validation results showed a high degree of prediction accuracy exceeding 90% for speeds up to 60-minute prediction horizons. For flow, the model achieved accuracies above 90% for 5- and 10-minute prediction horizons and more than 80% accuracy for 15- and 30-minute prediction horizons. These findings extend the set of AI models available for road operators and provide them with confidence in applying robust models that have been tested and evaluated on different freeways in Australia.


2018 ◽  
Vol 27 (01) ◽  
pp. 226-226

Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, Rudolph JE, Yaeger R, Soumerai T, Nissan MH, Chang MT, Chandarlapaty S, Traina TA, Paik PK, Ho AL, Hantash FM, Grupe A, Baxi SS, Callahan MK, Snyder A, Chi P, Danila D, Gounder M, Harding JJ, Hellmann MD, Iyer G, Janjigian Y, Kaley T, Levine DA, Lowery M, Omuro A, Postow MA, Rathkopf D, Shoushtari AN, Shukla N, Voss M, Paraiso E, Zehir A, Berger MF, Taylor BS, Saltz LB, Riely GJ, Ladanyi M, Hyman DM, Baselga J, Sabbatini P, Solit DB, Schultz N. OncoKB: a precision oncology knowledge base. JCO Precis Oncol 2017 Jul;2017 https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/28890946/ Newton Y, Novak AM, Swatloski T, McColl DC, Chopra S, Graim K, Weinstein AS, Baertsch R, Salama SR, Ellrott K, Chopra M, Goldstein TC, Haussler D, Morozova O, Stuart JM. TumorMap: exploring the molecular similarities of cancer samples in an interactive portal. Cancer Res 2017 Nov 1;77(21):e111-e114 https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/29092953/ Seyednasrollah F, Koestler DC, Wang T, Piccolo SR, Vega R, Greiner R, Fuchs C, Gofer E, Kumar L, Wolfinger RD, Winner KK, Bare C, Neto EC, Yu T, Shen L, Abdallah K, Norman T, Stolovitzky G, Soule HR, Sweeney CJ, Ryan CJ, Scher HI, Sartor O, Elo LL, Zhou FL, Guinney J, Costello JC, and Prostate Cancer DREAM Challenge Community. A DREAM challenge to build prediction models for short-term discontinuation of docetaxel in metastatic castration-resistant prostate cancer. JCO Clin Cancer Inform 2017 Aug 4;(1):1-15 http://ascopubs.org/doi/abs/10.1200/CCI.17.00018


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1639
Author(s):  
Seungmin Jung ◽  
Jihoon Moon ◽  
Sungwoo Park ◽  
Eenjun Hwang

Recently, multistep-ahead prediction has attracted much attention in electric load forecasting because it can deal with sudden changes in power consumption caused by various events such as fire and heat wave for a day from the present time. On the other hand, recurrent neural networks (RNNs), including long short-term memory and gated recurrent unit (GRU) networks, can reflect the previous point well to predict the current point. Due to this property, they have been widely used for multistep-ahead prediction. The GRU model is simple and easy to implement; however, its prediction performance is limited because it considers all input variables equally. In this paper, we propose a short-term load forecasting model using an attention based GRU to focus more on the crucial variables and demonstrate that this can achieve significant performance improvements, especially when the input sequence of RNN is long. Through extensive experiments, we show that the proposed model outperforms other recent multistep-ahead prediction models in the building-level power consumption forecasting.


2021 ◽  
Vol 11 (6) ◽  
pp. 2742
Author(s):  
Fatih Ünal ◽  
Abdulaziz Almalaq ◽  
Sami Ekici

Short-term load forecasting models play a critical role in distribution companies in making effective decisions in their planning and scheduling for production and load balancing. Unlike aggregated load forecasting at the distribution level or substations, forecasting load profiles of many end-users at the customer-level, thanks to smart meters, is a complicated problem due to the high variability and uncertainty of load consumptions as well as customer privacy issues. In terms of customers’ short-term load forecasting, these models include a high level of nonlinearity between input data and output predictions, demanding more robustness, higher prediction accuracy, and generalizability. In this paper, we develop an advanced preprocessing technique coupled with a hybrid sequential learning-based energy forecasting model that employs a convolution neural network (CNN) and bidirectional long short-term memory (BLSTM) within a unified framework for accurate energy consumption prediction. The energy consumption outliers and feature clustering are extracted at the advanced preprocessing stage. The novel hybrid deep learning approach based on data features coding and decoding is implemented in the prediction stage. The proposed approach is tested and validated using real-world datasets in Turkey, and the results outperformed the traditional prediction models compared in this paper.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 285
Author(s):  
Kwok Tai Chui ◽  
Brij B. Gupta ◽  
Pandian Vasant

Understanding the remaining useful life (RUL) of equipment is crucial for optimal predictive maintenance (PdM). This addresses the issues of equipment downtime and unnecessary maintenance checks in run-to-failure maintenance and preventive maintenance. Both feature extraction and prediction algorithm have played crucial roles on the performance of RUL prediction models. A benchmark dataset, namely Turbofan Engine Degradation Simulation Dataset, was selected for performance analysis and evaluation. The proposal of the combination of complete ensemble empirical mode decomposition and wavelet packet transform for feature extraction could reduce the average root-mean-square error (RMSE) by 5.14–27.15% compared with six approaches. When it comes to the prediction algorithm, the results of the RUL prediction model could be that the equipment needs to be repaired or replaced within a shorter or a longer period of time. Incorporating this characteristic could enhance the performance of the RUL prediction model. In this paper, we have proposed the RUL prediction algorithm in combination with recurrent neural network (RNN) and long short-term memory (LSTM). The former takes the advantages of short-term prediction whereas the latter manages better in long-term prediction. The weights to combine RNN and LSTM were designed by non-dominated sorting genetic algorithm II (NSGA-II). It achieved average RMSE of 17.2. It improved the RMSE by 6.07–14.72% compared with baseline models, stand-alone RNN, and stand-alone LSTM. Compared with existing works, the RMSE improvement by proposed work is 12.95–39.32%.


2021 ◽  
Vol 124 ◽  
pp. 102977
Author(s):  
Junyi Li ◽  
Fangce Guo ◽  
Aruna Sivakumar ◽  
Yanjie Dong ◽  
Rajesh Krishnan

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Kyungeun Lee ◽  
Moonjung Eo ◽  
Euna Jung ◽  
Yoonjin Yoon ◽  
Wonjong Rhee

Sign in / Sign up

Export Citation Format

Share Document