Computing Small Search Numbers in Linear Time

Author(s):  
Hans L. Bodlaender ◽  
Dimitrios M. Thilikos
Keyword(s):  
2019 ◽  
Vol 19 (01) ◽  
pp. 1940004
Author(s):  
BOTING YANG ◽  
RUNTAO ZHANG ◽  
YI CAO ◽  
FARONG ZHONG

In this paper, we consider the problem of finding the minimum number of searchers to sweep networks/graphs with special topological structures. Such a number is called the search number. We first study graphs, which contain only one cycle, and present a linear time algorithm to compute the vertex separation and the optimal layout of such graphs; by a linear-time transformation, we can find the search number of this kind of graphs in linear time. We also investigate graphs, in which every vertex lies on at most one cycle and each cycle contains at most three vertices of degree more than two, and we propose a linear time algorithm to compute their search number and optimal search strategy. We prove explicit formulas for the search number of the graphs obtained from complete k-ary trees by replacing vertices by cycles. We also present some results on approximation algorithms.


1995 ◽  
Vol 34 (05) ◽  
pp. 475-488
Author(s):  
B. Seroussi ◽  
J. F. Boisvieux ◽  
V. Morice

Abstract:The monitoring and treatment of patients in a care unit is a complex task in which even the most experienced clinicians can make errors. A hemato-oncology department in which patients undergo chemotherapy asked for a computerized system able to provide intelligent and continuous support in this task. One issue in building such a system is the definition of a control architecture able to manage, in real time, a treatment plan containing prescriptions and protocols in which temporal constraints are expressed in various ways, that is, which supervises the treatment, including controlling the timely execution of prescriptions and suggesting modifications to the plan according to the patient’s evolving condition. The system to solve these issues, called SEPIA, has to manage the dynamic, processes involved in patient care. Its role is to generate, in real time, commands for the patient’s care (execution of tests, administration of drugs) from a plan, and to monitor the patient’s state so that it may propose actions updating the plan. The necessity of an explicit time representation is shown. We propose using a linear time structure towards the past, with precise and absolute dates, open towards the future, and with imprecise and relative dates. Temporal relative scales are introduced to facilitate knowledge representation and access.


Sign in / Sign up

Export Citation Format

Share Document