A new high-precision gravimetric geoid model for Argentina

Author(s):  
C. Tocho ◽  
G. Font ◽  
M. G. Sideris
2011 ◽  
Vol 37 (1) ◽  
pp. 15-21
Author(s):  
Harli Jürgenson ◽  
Kristina Türk ◽  
Jüri Randjärv

This paper focuses on issues related to the calculation of a high-precision fitted geoid model on Estonian territory. Model Est-Geoid2003 have been used in Estonia several years in geodesy and other applications. New data from precise levelling, new global models and terrestrial gravity data give plenty of possibilities for updates and accuracy evaluation. The model is based on a gravimetric geoid. From the gravimetric data gathered, a gravimetric geoid for Estonia was calculated as an approximately 3-km net using the FFT method. After including the new gravimetric data gathered, the gravimetric geoid no longer had any significant tilt relative to the height anomalies derived from GPS-levelling points. The standard deviation between the points was 2.7 cm. The surface of the calculated gravimetric geoid was fitted by high-precision GPS-levelling points. As a result, a height transformation model was determined to reflect the differences between the normal heights of BK77 and the ellipsoidal heights of EUREF-EST97 on Estonian territory. The model was originally called Est-Geoid2003 and is part of the official national geodetic system in Estonia. The model is updated and evaluated here using precise GPS-levelling points obtained from different measurement campaigns. In 2008–2010 the preliminary results from the latest precise levelling sessions became available, leading to a significant increase in the number of precise GPS-levelling points. Both networks are part of the Estonian integrated geodetic network. Using very precise levelling connections from new levelling lines, normal heights of several RGP points were calculated additionally. Misclosure of 300 km polygons are less than 2–3 mm normally. Ealier all precisely levelled RGP points were included into fitting points. Now many new points are available for fitting and independent evaluation. However, the use of several benchmarks for the same RGP point sometimes results in a 1–2 cm difference in normal height. This reveals problems with the stability of older wall benchmarks, which are widely used in Estonia. Even we recognized, that 0.5 cm fitted geoid model is not achievable using wall benchmarks. New evaluation of the model Est-Geoid2003 is introduced in the light of preliminary data from new precise levelling. Model accuracy is recognised about 1.2 cm as rms. Santrauka Akcentuojami klausimai, susiję su tiksliausio Estijos geoido modelio skaičiavimu. Šis modelis Estijoje geodezijoje ir kitose mokslo bei technikos šakose taikomas nuo 2003 metų. Nauji precizinės niveliacijos duomenys, nauji globalieji geopotencialo modeliai ir žemyno gravimetriniai duomenys – prielaidos geoido modeliui atnaujinti ir jo tikslumui įvertinti. Modelio pagrindas – gravimetrinis geoidas. Pagal surinktus gravimetrinius duomenis Estijos geoidas buvo apskaičiuotas greitųjų Furjė tranformacijų (FFT) metodu, sukuriant apie 3 km akių tinklą. Įtraukus naujuosius gravimetrinius duomenis, gravimetrinis geoidas daugiau nebeturi aukščių anomalijų. Vidutinė kvadratinė paklaida – 2,7 cm. Apskaičiuoto gravimetrinio geoido paviršius susietas su aukščių sistema pagal GPS niveliacijos taškus. 2008–2010 m. gavus precizinės niveliacijos duomenis, žymiai padidėjo GPS niveliacijos taškų skaičius bei jų tikslumas, nes precizinės niveliacijos poligonų iki 300 km nesąryšiai gauti mažesni nei 2–3 mm. Įvertinus naujo Estijos geoido modelio tikslumą nustatyta 1,2 cm vidutinė kvadratinė paklaida. Резюме Акцентируются вопросы, касающиеся вычисления точной модели геоида Эстонии. Эта модель применяется в Эстонии с 2003 г. в геодезии и других отраслях науки и техники. Новые данные высокоточной нивеляции, новые глобальные модели геопотенциала, а также гравиметрические данные создают предпосылки для обновления модели геоида и оценки его точности. Модель основана на гравиметрическом геоиде. Модель геоида Эстонии была вычислена быстрым методом Фурье с использованием всех гравиметрических данных и созданием сети 3×3 км. После использования новых гравиметрических данных в геоиде не оказалось значительного превышения высот по сравнению с точками, измеренными методом GPS. Среднеквадратическая погрешность составила 2,7 см. Вычисленная модель геоида была соединена с системой высот по точкам GPSнивелирования. Благодаря новым данным по высокоточной нивеляции, полученным в 2008–2010 гг., значительно увеличилось количество точек GPSнивелирования и тем самым увеличилась точность геоида, так как невязки полигонов нивелирования составляют всего 2–3 мм. Оценив точность нового геоида Эстонии, выявлено среднеквадратическое отклонение в 1,2 см.


2022 ◽  
Vol 9 ◽  
Author(s):  
Hamad Al-Ajami ◽  
Ahmed Zaki ◽  
Mostafa Rabah ◽  
Mohamed El-Ashquer

A new gravimetric geoid model, the KW-FLGM2021, is developed for Kuwait in this study. This new geoid model is driven by a combination of the XGM2019e-combined global geopotential model (GGM), terrestrial gravity, and the SRTM 3 global digital elevation model with a spatial resolution of three arc seconds. The KW-FLGM2021 has been computed by using the technique of Least Squares Collocation (LSC) with Remove-Compute-Restore (RCR) procedure. To evaluate the external accuracy of the KW-FLGM2021 gravimetric geoid model, GPS/leveling data were used. As a result of this evaluation, the residual of geoid heights obtained from the KW-FLGM2021 geoid model is 2.2 cm. The KW-FLGM2021 is possible to be recommended as the first accurate geoid model for Kuwait.


2011 ◽  
Vol 37 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Ahmed Abdalla ◽  
Robert Tenzer

We compile a new geoid model at the computation area of New Zealand and its continental shelf using the method developed at the Royal Institute of Technology (KTH) in Stockholm. This method utilizes the least-squares modification of the Stokes integral for the biased, unbiased, and optimum stochastic solutions. The modified Bruns-Stokes integral combines the regional terrestrial gravity data with a global geopotential model (GGM). Four additive corrections are calculated and applied to the approximate geoid heights in order to obtain the gravimetric geoid. These four additive corrections account for the combined direct and indirect effects of topography and atmosphere, the contribution of the downward continuation reduction, and the formulation of the Stokes problem in the spherical approximation. The gravimetric geoid model is computed using two heterogonous gravity data sets: the altimetry-derived gravity anomalies from the DNSC08 marine gravity database (offshore) and the ground gravity measurements from the GNS Science gravity database (onshore). The GGM coefficients are taken from EIGEN-GRACE02S complete to degree 65 of spherical harmonics. The topographic heights are generated from the 1×1 arc-sec detailed digital terrain model (DTM) of New Zealand and from the 30×30 arc-sec global elevation data of SRTM30_PLUS V5.0. The least-squares analysis is applied to combine the gravity and GPS-levelling data using a 7-parameter model. The fit of the KTH geoid model with GPS-levelling data in New Zealand is 7 cm in terms of the standard deviation (STD) of differences. This STD fit is the same as the STD fit of the NZGeoid2009, which is the currently adopted official quasigeoid model for New Zealand. Santrauka Stokholmo Karališkajame technologijos institute (KTH) sukurtu metodu apskaičiuotas naujas Naujosios Zelandijos ir kontinentinio šelfo geoido modelis. Taikoma Stokso integralo mažiausiųjų kvadratų modifikacija, įvertinant paklaidas ir jų nevertinant bei ieškant optimalių stochastinių sprendinių. Modifikuotas Bruno ir Stokso integralas sieja regioninius žemyninius gravimetrinius duomenis su globaliuoju geopotencialo modeliu (GGM). Gravimetriniam geoidui gauti skaičiuojamos keturios papildomos pataisos: topografinės situacijos ir atmosferos tiesioginės ir netiesioginės įtakos, redukcijos įtakos ir Stokso integralo taikymo sferiniam paviršiui. Gravimetrinis geoido modelis apskaičiuotas pagal du duomenų rinkinius: DNSC08 jūrinių gravimetrinių duomenų bazėje (šelfas) esančias altimetriniu metodu nustatytas sunkio pagreičio anomalijas ir žemyninės dalies gravimetrinių matavimų duomenis iš GNS gravimetrinės duomenų bazės (pakrantė). GGM koeficientai imti iš EIGEN-GRACE02S modelio sferinių iki 65 laipsnio harmonikų. Topografiniai aukščiai sugeneruoti iš Naujosios Zelandijos 1×1 sekundės detaliojo skaitmeninio reljefo modelio ir iš 30×30 sekundžių globaliojo aukščių modelio SRTM30_PLUS V5.0. Gravimetriniams ir GPS niveliacijos duomenims sujungti taikytas mažiausiųjų kvadratų 7 parametrų metodas. KTH metodu sudaryto geoido modelio vidutinė kvadratinė paklaida 7 cm. Tai sutampa su NZGeoid 2009 geoido modelio, taikomo Naujoje Zelandijoje, tikslumu. Резюме Модель геоида континентального шельфа Новой Зеландии построена с применением метода, созданного в Королевском технологическом институте Стокгольма. Данный метод основан на модификации решения интеграла Стокса методом наименьших квадратов с оценкой или без оценки погрешностей и поиском оптимальных статистических решений. Модифицированный интеграл БрунаСтокса объединяет региональные надземные гравиметрические данные с глобальной геопотенциальной моделью (GGM). Для определения гравиметрического геоида вычисляются дополнительные поправки прямого и косвенного влияния топографии и атмосферы, редукции и применения проблемы Стокса для сферической поверхности. Гравиметрическая модель геоида вычисляется на основе двух баз данных: альтиметрическим методом определенных аномалий силы тяжести в базе морских гравиметрических данных DNSC08 (шельф) и надземной части гравиметрических измерений из базы данных GNS. Коэффициенты GGM взяты из сферических гармоник до 65 степени модели EIGENGRACEO2S. Топографические высоты сгенерированы из детальной цифровой модели рельефа Новой Зеландии с сеткой 1×1 секунду и из глобальной модели высот SRTM30_PLUSv5.0 с сеткой 30×30 секунд. Для объединения гравиметрических и GPSнивелирных данных применялся метод наименьших квадратов с 7 параметрами. Среднеквадратическая погрешность модели геоида, созданной по методу КТН, равна 7 см. Точность аналогична точности применяемой в Новой Зеландии модели геоида NZGeoid2009.


Author(s):  
M. F. Pa’suya ◽  
A. H. M. Din ◽  
J. C. McCubbine ◽  
A. H. Omar ◽  
Z. M. Amin ◽  
...  

Abstract. We investigate the use of the KTH Method to compute gravimetric geoid models of Malaysian Peninsular and the effect of two differing strategies to combine and interpolate terrestrial, marine DTU17 free air gravity anomaly data at regular grid nodes. Gravimetric geoid models were produced for both free air anomaly grids using the GOCE-only geopotential model GGM GO_CONS_GCF_2_SPW_R4 as the long wavelength reference signal and high-resolution TanDEM-X global digital terrain model. The geoid models were analyzed to assess how the different gridding strategies impact the gravimetric geoid over Malaysian Peninsular by comparing themto 172 GNSS-levelling derived geoid undulations. The RMSE of the two sets of gravimetric geoid model / GNSS-levelling residuals differed by approx. 26.2 mm. When a 4-parameter fit is used, the difference between the RMSE of the residuals reduced to 8 mm. The geoid models shown here do not include the latest airborne gravity data used in the computation of the official gravimetric geoid for the Malaysian Peninsular, for this reason they are not as precise.


2014 ◽  
Vol 71 (4) ◽  
Author(s):  
Othman A.H. ◽  
Omar, K. ◽  
Othman. R ◽  
Mat Som Z.A ◽  
Opaluwa, Y.D

The present vertical datums in Sabah and Sarawak (East Malaysia) are based upon various tide gauge measurements of mean sea level over certain period defined locally, are manifested by a physical framework of vertical reference point i.e benchmarks. An effort to establish a unified vertical network in Sabah and Sarawak has undergone very tedious survey operation, lack of access routes to connect levelling network due to geographical setting constraint, and it is too costly to be fully implemented. This paper discussed the current status of vertical datum in East Malaysia as well as the concept of realizing new vertical datum based on gravimetric geoid model.


2011 ◽  
Vol 60 (4) ◽  
pp. 213-221 ◽  
Author(s):  
Ahmed Abdalla ◽  
Derek Fairhead

2015 ◽  
Vol 52 (10) ◽  
pp. 823-832 ◽  
Author(s):  
Ahmed Abdalla ◽  
Saad Mogren

A gravimetric geoid model (SAGEO13) is computed for the Kingdom of Saudi Arabia using a rigorous stochastic computational method. The computational methodology is based on a combination of least-squares (LS) modification of Stokes’ formula and the additive corrections for topographic, ellipsoidal, atmospheric, and downward continuation effects on the geoid solution. In this study, we used terrestrial gravity data, a digital elevation model (SRTM3), and seven global geopotential models (GGMs) to compute a new geoid model for Saudi Arabia. The least-squares coefficients are derived based on the optimisation of the input modification parameters. The gravimetric solution and its additive corrections are computed based on the optimum LS coefficients. Compared to GPS-levelling data, SAGEO13 shows a fit of 18 cm (RMS) after using a 4-parameter fitting model.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
L. E. Sjöberg ◽  
A. Gidudu ◽  
R. Ssengendo

AbstractFor many developing countries such as Uganda, precise gravimetric geoid determination is hindered by the low quantity and quality of the terrestrial gravity data. With only one gravity data point per 65 km2, gravimetric geoid determination in Uganda appears an impossible task. However, recent advances in geoid modelling techniques coupled with the gravity-field anomalies from the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission have opened new avenues for geoid determination especially for areas with sparse terrestrial gravity. The present study therefore investigates the computation of a gravimetric geoid model overUganda (UGG2014) using the Least Squares Modification of Stokes formula with additive corrections. UGG2014 was derived from sparse terrestrial gravity data from the International Gravimetric Bureau, the 3 arc second SRTM ver4.1 Digital Elevation Model from CGIAR-CSI and the GOCE-only global geopotential model GO_CONS_GCF_2_TIM_R5. To compensate for the missing gravity data in the target area, we used the surface gravity anomalies extracted from the World Gravity Map 2012. Using 10 Global Navigation Satellite System (GNSS)/levelling data points distributed over Uganda, the RMS fit of the gravimetric geoid model before and after a 4-parameter fit is 11 cm and 7 cm respectively. These results show that UGG2014 agrees considerably better with GNSS/levelling than any other recent regional/ global gravimetric geoid model. The results also emphasize the significant contribution of the GOCE satellite mission to the gravity field recovery, especially for areas with very limited terrestrial gravity data.With an RMS of 7 cm, UGG2014 is a significant step forward in the modelling of a “1-cm geoid” over Uganda despite the poor quality and quantity of the terrestrial gravity data used for its computation.


Sign in / Sign up

Export Citation Format

Share Document