Volcanic ash transport and dispersion models

Author(s):  
Rorik Peterson ◽  
Peter Webley ◽  
Réal D’Amours ◽  
René Servranckx ◽  
Barbara Stunder ◽  
...  
2015 ◽  
Vol 57 ◽  
Author(s):  
Torge Steensen ◽  
Peter Webley ◽  
Jon Dehn

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>Quantifying volcanic ash emissions syneruptively is an important task for the global aviation community. However, due to the near real time nature of volcano monitoring, many parameters important for accurate ash mass estimates cannot be obtained easily. Even when using the best possible estimates of those parameters, uncertainties associated with the ash masses remain high, especially if the satellite data is only available in the traditional 10.8 and 12.0 μm bands. To counteract this limitation, we developed a quantitative comparison between the ash extents in satellite and model data. The focus is the manual cloud edge definition based on the available satellite reverse absorption (RA) data as well as other knowledge like pilot reports or ground-based observations followed by an application of the Volcanic Ash Retrieval on the defined subset with an RA threshold of 0 K. This manual aspect, although subjective to the experience of the observer, can show a significant improvement as it provides the ability to highlight ash that otherwise would be obscured by meteorological clouds or, by passing over different surfaces with unaccounted temperatures, might be lost entirely and thus remains undetectable for an automated satellite approach. We show comparisons to Volcanic Ash Transport and Dispersion models and outline a quantitative match as well as percentages of overestimates based on satellite or dispersion model data which can be converted into a level of reliability for near real time volcano monitoring. </span></p></div></div></div>


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1168
Author(s):  
Umberto Rizza ◽  
Eleonora Brega ◽  
Maria Teresa Caccamo ◽  
Giuseppe Castorina ◽  
Mauro Morichetti ◽  
...  

The aim of the present work is to utilize a new functionality within the Weather Research and Forecasting model coupled with Chemistry (WRF–Chem) that allows simulating emission, transport, and settling of pollutants released during the Etna 2015 volcanic activities. This study constitutes the first systematic application of the WRF–Chem online-based approach to a specific Etna volcanic eruption, with possible effects involving the whole Mediterranean area. In this context, the attention has been focused on the eruption event, recorded from 3–7 December 2015, which led to the closure of the nearby Catania International Airport. Quantitative meteorological forecasts, analyses of Etna volcanic ash transport, and estimates of the ash ground deposition have been performed. In order to test the performance of the proposed approach, the model outputs have been compared with data provided by satellite sensors and Doppler radars. As a result, it emerges that, as far as the selected eruption event is concerned, the WRF–Chem model reasonably reproduces the distribution of SO2 and of volcanic ash. In addition, this modeling system may provide valuable support both to airport management and to local stakeholders including public administrations.


Author(s):  
Qingyuan Yang ◽  
E. Bruce Pitman ◽  
Elaine Spiller ◽  
Marcus Bursik ◽  
Andrea Bevilacqua

Statistical emulators are a key tool for rapidly producing probabilistic hazard analysis of geophysical processes. Given output data computed for a relatively small number of parameter inputs, an emulator interpolates the data, providing the expected value of the output at untried inputs and an estimate of error at that point. In this work, we propose to fit Gaussian Process emulators to the output from a volcanic ash transport model, Ash3d. Our goal is to predict the simulated volcanic ash thickness from Ash3d at a location of interest using the emulator. Our approach is motivated by two challenges to fitting emulators—characterizing the input wind field and interactions between that wind field and variable grain sizes. We resolve these challenges by using physical knowledge on tephra dispersal. We propose new physically motivated variables as inputs and use normalized output as the response for fitting the emulator. Subsetting based on the initial conditions is also critical in our emulator construction. Simulation studies characterize the accuracy and efficiency of our emulator construction and also reveal its current limitations. Our work represents the first emulator construction for volcanic ash transport models with considerations of the simulated physical process.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 200 ◽  
Author(s):  
Helen N. Webster ◽  
Benjamin J. Devenish ◽  
Larry G. Mastin ◽  
David J. Thomson ◽  
Alexa R. Van Eaton

Large explosive eruptions can result in the formation of an umbrella cloud which rapidly expands, spreading ash out radially from the volcano. The lateral spread by the intrusive gravity current dominates the transport of the ash cloud. Hence, to accurately forecast the transport of ash from large eruptions, lateral spread of umbrella clouds needs to be represented within volcanic ash transport and dispersion models. Here, we describe an umbrella cloud parameterisation which has been implemented into an operational Lagrangian model and consider how it may be used during an eruption when information concerning the eruption is limited and model runtime is key. We examine different relations for the volume flow rate into the umbrella, and the rate of spreading within the cloud. The scheme is validated against historic eruptions of differing scales (Pinatubo 1991, Kelud 2014, Calbuco 2015 and Eyjafjallajökull 2010) by comparing model predictions with satellite observations. Reasonable predictions of umbrella cloud spread are achieved using an estimated volume flow rate from the empirical equation by Bursik et al. and the observed eruption height. We show how model predictions can be refined during an ongoing eruption as further information and observations become available.


2012 ◽  
Vol 45-46 ◽  
pp. 50-64 ◽  
Author(s):  
Adam J. Durant ◽  
Gustavo Villarosa ◽  
William I. Rose ◽  
Pierre Delmelle ◽  
Alfred J. Prata ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 285
Author(s):  
Marcus Bursik ◽  
Qingyuan Yang ◽  
Adele Bear-Crozier ◽  
Michael Pavolonis ◽  
Andrew Tupper

Volcanic ash clouds often become multilayered and thin with distance from the vent. We explore one mechanism for the development of this layered structure. We review data on the characteristics of turbulence layering in the free atmosphere, as well as examples of observations of layered clouds both near-vent and distally. We then explore dispersion models that explicitly use the observed layered structure of atmospheric turbulence. The results suggest that the alternation of turbulent and quiescent atmospheric layers provides one mechanism for the development of multilayered ash clouds by modulating vertical particle motion. The largest particles, generally μ>100 μm, are little affected by turbulence. For particles in which both settling and turbulent diffusion are important to vertical motion, mostly in the range of 10–100 μμm, the greater turbulence intensity and more rapid turbulent diffusion in some layers causes these particles to spend greater time in the more turbulent layers, leading to a layering of concentration. The results may have important implications for ash cloud forecasting and aviation safety.


2015 ◽  
Vol 15 (17) ◽  
pp. 24727-24749 ◽  
Author(s):  
N. J. Harvey ◽  
H. F. Dacre

Abstract. The decision to close airspace in the event of a volcanic eruption is based on hazard maps of predicted ash extent. These are produced using output from volcanic ash transport and dispersion (VATD) models. In this paper an objective metric to evaluate the spatial accuracy of VATD simulations relative to satellite retrievals of volcanic ash is presented. The metric is based on the fractions skill score (FSS). This measure of skill provides more information than traditional point-by-point metrics, such as success index and Pearson correlation coefficient, as it takes into the account spatial scale over which skill is being assessed. The FSS determines the scale over which a simulation has skill and can differentiate between a "near miss" and a forecast that is badly misplaced. The idealised scenarios presented show that even simulations with considerable displacement errors have useful skill when evaluated over neighbourhood scales of 200–700 km2. This method could be used to compare forecasts produced by different VATDs or using different model parameters, assess the impact of assimilating satellite retrieved ash data and evaluate VATD forecasts over a long time period.


2021 ◽  
Author(s):  
Matthieu Plu ◽  
Barbara Scherllin-Pirscher ◽  
Delia Arnold Arias ◽  
Rocio Baro ◽  
Guillaume Bigeard ◽  
...  

Abstract. High quality volcanic ash forecasts are crucial to minimize the economic impact of volcanic hazards on air traffic. Decision-making is usually based on numerical dispersion modeling with only one model realization. Given the inherent uncertainty of such approach, a multi-model multi-source term ensemble has been designed and evaluated for the Eyjafjallajökull eruption in May 2010. Its use for air traffic management is discussed. Two multi-model ensembles were built: the first is based on the output of four dispersion models and their own implementation of ash ejection. All a priori model source terms were constrained by observational evidence of the volcanic ash cloud top as a function of time. The second ensemble is based on the same four dispersion models, which were run with three additional source terms: (i) a source term obtained with background modeling constrained with satellite data (a posteriori source term), (ii) its lower bound estimate, and (iii) its upper bound estimate. The a priori ensemble gives valuable information about the probability of ash dispersion during the early phase of the eruption, when observational evidence is limited. However, its evaluation with observational data reveals lower quality compared to the second ensemble. While the second ensemble ash column load and ash horizontal location compare well to satellite observations, 3D ash concentrations are negatively biased. This might be caused by the vertical distribution of ash, which is too much diluted in all model runs, probably due to defaults in the a posteriori source term and vertical transport and/or diffusion processes in all models. Relevant products for the air traffic management are horizontal maps of ash concentration quantiles (median, 75 %, 99 %) at a fine-resolved flight level grid. These maps can be used for route optimization in the areas where ash does not pose a direct and urgent threat to aviation. Cost-optimized consideration of such hazards will result in much less impact on flight cancellations, reroutings, and traffic flow congestions.


2020 ◽  
Vol 20 (10) ◽  
pp. 2721-2737 ◽  
Author(s):  
Sean D. Egan ◽  
Martin Stuefer ◽  
Peter W. Webley ◽  
Taryn Lopez ◽  
Catherine F. Cahill ◽  
...  

Abstract. Volcanic eruptions eject ash and gases into the atmosphere that can contribute to significant hazards to aviation, public and environment health, and the economy. Several volcanic ash transport and dispersion (VATD) models are in use to simulate volcanic ash transport operationally, but none include a treatment of volcanic ash aggregation processes. Volcanic ash aggregation can greatly reduce the atmospheric budget, dispersion and lifetime of ash particles, and therefore its impacts. To enhance our understanding and modeling capabilities of the ash aggregation process, a volcanic ash aggregation scheme was integrated into the Weather Research Forecasting with online Chemistry (WRF-Chem) model. Aggregation rates and ash mass loss in this modified code are calculated in line with the meteorological conditions, providing a fully coupled treatment of aggregation processes. The updated-model results were compared to field measurements of tephra fallout and in situ airborne measurements of ash particles from the April–May 2010 eruptions of Eyjafjallajökull volcano, Iceland. WRF-Chem, coupled with the newly added aggregation code, modeled ash clouds that agreed spatially and temporally with these in situ and field measurements. A sensitivity study provided insights into the mechanics of the aggregation code by analyzing each aggregation process (collision kernel) independently, as well as by varying the fractal dimension of the newly formed aggregates. In addition, the airborne lifetime (e-folding) of total domain ash mass was analyzed for a range of fractal dimensions, and a maximum reduction of 79.5 % of the airborne ash lifetime was noted.


2021 ◽  
Author(s):  
Frances Beckett ◽  
Ralph Burton ◽  
Fabio Dioguardi ◽  
Claire Witham ◽  
John Stevenson ◽  
...  

&lt;p&gt;Atmospheric transport and dispersion models are used by Volcanic Ash Advisory Centers (VAACs) to provide timely information on volcanic ash clouds to mitigate the risk of aircraft encounters. Inaccuracies in dispersion model forecasts can occur due to the uncertainties associated with source terms, meteorological data and model parametrizations. Real-time validation of model forecasts against observations is therefore essential to ensure their reliability. Forecasts can also benefit from comparison to model output from other groups; through understanding how different modelling approaches, variations in model setups, model physics, and driving meteorological data, impact the predicted extent and concentration of ash. The Met Office, the National Centre for Atmospheric Science (NCAS) and the British Geological Survey (BGS) are working together to consider how we might compare data (both qualitatively and quantitatively) from the atmospheric dispersion models NAME, FALL3D and HYSPLIT, using meteorological data from the Met Office Unified Model and the NOAA Global Forecast System (providing an effective multi-model ensemble). Results from the model inter-comparison will be used to provide advice to the London VAAC to aid forecasting decisions in near real time during a volcanic ash cloud event. In order to facilitate this comparison, we developed a Python package (ash-model-plotting) to read outputs from the different models into a consistent structure. Here we present our framework for generating comparable plots across the different partners, with a focus on total column mass loading products. These are directly comparable to satellite data retrievals and therefore important for model validation. We also present outcomes from a recent modelling exercise and discuss next steps for further improving our forecast validation.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document