Shock waves dynamics investigations for surface discharge energy analysis

Shock Waves ◽  
2009 ◽  
pp. 1491-1496
Author(s):  
D.F. Latfullin ◽  
I.V. Mursenkova ◽  
I.A. Znamenskaya ◽  
T.V. Bazhenova ◽  
A.E. Lutsky
Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4655
Author(s):  
Yong Sung Cho ◽  
Tae Yoon Hong ◽  
Young Woo Youn ◽  
Jong Ho Sun ◽  
Se-Hee Lee

In this paper, the amount of SF6 decomposition gases due to the partial discharge (PD) was studied in the SF6 gas-insulated transformer. The long-term PD degradation experiment was performed while controlling the discharge magnitude using the surface discharge, and the gas generation amount was measured by using gas chromatography for SO2F2, SOF2, SO2, CO, and CF4. In addition, to investigate the relationship between the partial discharge energy and the decomposed gas generation amount, partial discharge energy was calculated by a data processing program and converted to the unit of joule per mole. With the finite element method (FEM), the electric field distribution and SF6 gas decomposition mechanism were explained for the partial discharge energy effect on the gas generation. This study helps understand the relationship between the partial discharge energy and the decomposed gas generation ratio with the experimental results and can be used for the diagnosis of PD and maintenance process for the gas-insulated transformers.


Author(s):  
Tomohiro Furusato ◽  
Mitsuru Sasaki ◽  
Yoshinobu Matsuda ◽  
Takahiko Yamashita

Abstract Plasmas on liquids have provided significant applications in material, environmental, and biological sciences. The mechanisms of these chemical reactions in liquids have been primarily discussed by the plasma–liquid interactions and convection by an electrohydrodynamic flow. Although shock waves play a significant role in the radical formation, agitation, and cell destruction, not much information is available on underwater shock waves induced by the surface discharge on water. In this study, an underwater shock wave generated by the pulsed surface discharge on water using the laser shadowgraph method has been demonstrated. The results reveal that the shock wave generated by the discharge on water was transmitted into the water. The mean velocity of the shock wave reached 1.7 km/s. The results indicate that the surface discharge accelerates the reaction in the water by the combined action of the underwater shock wave and the plasma reaction at the air–water interface. The results are expected to aid in the understanding the mechanisms of existing applications, such as decomposition, synthesis, and sterilization.


2020 ◽  
Vol 48 (7) ◽  
pp. 2639-2645
Author(s):  
Mitsuhiko Sato ◽  
Takashi Sakugawa ◽  
Tomohiko Yamashita ◽  
Nushin Hosano ◽  
Hamid Hosano

Author(s):  
И.В. Мурсенкова ◽  
А.С. Сазонов ◽  
Ю. Ляо

AbstractThe influence of ~300-ns pulsed sliding surface discharges on supersonic airflow with M = 1.2–1.5 past a thin wedge has been studied in a shock tube at 0.12–0.14 kg/m^3 gas density. It is established that inhomogeneity of the airflow-density field near the wedge leads to changes in the discharge current geometry and the structure of surface-discharge glow. The dynamics of discharge-initiated shock waves disturbing the quasi-stationary flow past the wedge was studied by the method of shadow visualization. It is shown that shock waves from intense surface-discharge channels in front of the wedge and behind its rear part can produce nonstationary action on the flow past the wedge surface, which lasts for up to 120 μs after the discharge pulse.


Author(s):  
J. R. Fields

The energy analysis of electrons scattered by a specimen in a scanning transmission electron microscope can improve contrast as well as aid in chemical identification. In so far as energy analysis is useful, one would like to be able to design a spectrometer which is tailored to his particular needs. In our own case, we require a spectrometer which will accept a parallel incident beam and which will focus the electrons in both the median and perpendicular planes. In addition, since we intend to follow the spectrometer by a detector array rather than a single energy selecting slit, we need as great a dispersion as possible. Therefore, we would like to follow our spectrometer by a magnifying lens. Consequently, the line along which electrons of varying energy are dispersed must be normal to the direction of the central ray at the spectrometer exit.


Author(s):  
M.A. Mogilevsky ◽  
L.S. Bushnev

Single crystals of Al were loaded by 15 to 40 GPa shock waves at 77 K with a pulse duration of 1.0 to 0.5 μs and a residual deformation of ∼1%. The analysis of deformation structure peculiarities allows the deformation history to be re-established.After a 20 to 40 GPa loading the dislocation density in the recovered samples was about 1010 cm-2. By measuring the thickness of the 40 GPa shock front in Al, a plastic deformation velocity of 1.07 x 108 s-1 is obtained, from where the moving dislocation density at the front is 7 x 1010 cm-2. A very small part of dislocations moves during the whole time of compression, i.e. a total dislocation density at the front must be in excess of this value by one or two orders. Consequently, due to extremely high stresses, at the front there exists a very unstable structure which is rearranged later with a noticeable decrease in dislocation density.


Author(s):  
V. Serin ◽  
K. Hssein ◽  
G. Zanchi ◽  
J. Sévely

The present developments of electron energy analysis in the microscopes by E.E.L.S. allow an accurate recording of the spectra and of their different complex structures associated with the inner shell electron excitation by the incident electrons (1). Among these structures, the Extended Energy Loss Fine Structures (EXELFS) are of particular interest. They are equivalent to the well known EXAFS oscillations in X-ray absorption spectroscopy. Due to the EELS characteristic, the Fourier analysis of EXELFS oscillations appears as a promising technique for the characterization of composite materials, the major constituents of which are low Z elements. Using EXELFS, we have developed a microstructural study of carbon fibers. This analysis concerns the carbon K edge, which appears in the spectra at 285 eV. The purpose of the paper is to compare the local short range order, determined by this way in the case of Courtauld HTS and P100 ex-polyacrylonitrile carbon fibers, which are high tensile strength (HTS) and high modulus (HM) fibers respectively.


Sign in / Sign up

Export Citation Format

Share Document