Design of Hot Stamping Tools and Blanking Strategies of Ultra High Strength Steels

Author(s):  
Hyunwoo So ◽  
Hartmut Hoffmann
2014 ◽  
Vol 1063 ◽  
pp. 194-197
Author(s):  
Kai Wang ◽  
Zhi Bin Wang ◽  
Pei Xing Liu ◽  
Yi Sheng Zhang

Due to high temperature and inevitable contact with air, strong oxidation and decarburization of the bare steel exist in hot stamping of ultra-high strength steels. Martensitic stainless steel could be a potential solution with its corrosion resistance and high strength. In this paper, the influences of austenitization temperature (850 to 1000 °C) and time (3 to 10 min) on final properties of 410 martensitic stainless steel were investigated, to obtain an ultra-high strength up to 1500MPa. The hot stamping of 410 steel is simulated by compression tests with a flat die. Mechanical properties of blanks after hot stamping process were detected by tensile tests. Results show that the final strength of 410 steel increases and the plasticity decreases, with the increase of austenitization temperature and time. After austenitization at 1000 °C for 5-10 min, an ultimate tensile strength up to 1500MPa is obtained with a martensite dominated microstructure.


Author(s):  
B. T. Tang ◽  
Q. L. Wang ◽  
S. Bruschi ◽  
A. Ghiotti ◽  
P. F. Bariani

Hot stamping of quenchenable ultra high strength steels currently represents a promising forming technology for the manufacturing of safety and crash relevant parts. For some applications, such as B-pillars which may undergo impact loading, it may be desirable to create regions of the part with softer and more ductile microstructure. In the article, a laboratory-scale hot stamped U-channel was produced with segmented die, which was heated by cartridge heaters and cooled by chilled water recirculation independently. It can be concluded that in order to satisfy tailored mechanical properties by introducing regions, which have an increased elongation for improved energy absorption, the minimum die temperature should be no less than 450 °C. Optical micrographs were used to verify the microstructure of the as-quenched phases with respect to the heated die temperatures. For the cooled die region, the microstructure was predominantly martensite for all the die temperatures interested. With the increase of heated die temperature, there was a decrease of Vickers hardness in the heated region due to the increasing volume fractions of bainite. The finite element (FE) model was developed to capture the overall hardness trends that were observed in the experiments. The trends between the simulations and experiments were very similar, with acceptable differences in the magnitude of Vickers hardness. The transition widths were measured and simulated and there was a quite good agreement between experiment and simulation with almost the same value of 10 mm by taking heat conduction into account.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 934 ◽  
Author(s):  
Renzo Valentini ◽  
Michele Maria Tedesco ◽  
Serena Corsinovi ◽  
Linda Bacchi ◽  
Michele Villa

The problem of hydrogen embrittlement in ultra-high-strength steels is well known. In this study, slow strain rate, four-point bending, and permeation tests were performed with the aim of characterizing innovative materials with an ultimate tensile strength higher than 1000 MPa. Hydrogen uptake, in the case of automotive components, can take place in many phases of the manufacturing process: during hot stamping, due to the presence of moisture in the furnace atmosphere, high-temperature dissociation giving rise to atomic hydrogen, or also during electrochemical treatments such as cataphoresis. Moreover, possible corrosive phenomena could be a source of hydrogen during an automobile’s life. This series of tests was performed here in order to characterize two press-hardened steels (PHS)—USIBOR 1500® and USIBOR 2000®—to establish a correlation between ultimate mechanical properties and critical hydrogen concentration.


2021 ◽  
Vol 174 ◽  
pp. 111035
Author(s):  
Ajit Kumar Pramanick ◽  
Hrishikesh Das ◽  
Ji-Woo Lee ◽  
Yeyoung Jung ◽  
Hoon-Hwe Cho ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 721
Author(s):  
Yongjun Jeon ◽  
Hyunseok Choi ◽  
Dongearn Kim

The recent stringent regulations on vehicle safety and reducing CO2 emissions have led to a continuous increase in the application of press-hardened steel (PHS) in automobiles. Similar to other high-strength steels, assembling PHS components using the common welding techniques employed in automotive production lines is significantly difficult because of the surface coating layers and the additives within. This difficulty in post-processing, attributed to its high strength, also limits the mechanical fastening of PHS components. Therefore, this study aims to develop a process for forming a structure enabling mechanical fastening by sequentially applying piercing and hole-flanging operations during the hot stamping process. Our experimental apparatus was designed to perform the hole-flanging operation after the piercing operation within a single stroke at a specific temperature during the quenching process of PHS. At high temperatures of 440 °C or higher, the hole-flanging process was conducted in a direction opposite to that of the piercing operation for creating the pilot hole. An extruded collar with a height of 8.0 mm and a diameter of 17.5 mm was achieved, which is hole expansion ratio(HER) of 82.5%.


Sign in / Sign up

Export Citation Format

Share Document