A Term Splitting Algorithm for Simulating Fluid-Rock Interaction Problems in Fluid-Saturated Hydrothermal Systems of Subcritical Zhao Numbers

Author(s):  
Chongbin Zhao ◽  
Bruce E. Hobbs ◽  
Alison Ord
Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 995 ◽  
Author(s):  
Hans G.M. Eggenkamp ◽  
Michael A.W. Marks ◽  
Petya Atanasova ◽  
Thomas Wenzel ◽  
Gregor Markl

We determined the halogen (F, Cl, Br, and I) and sulfur (S) concentrations in Cl-rich rock-forming minerals from five peralkaline complexes. We investigated sodalite (N = 42), eudialyte-group minerals (N = 84), and tugtupite (N = 8) from representative rock samples derived from Ilímaussaq (South Greenland), Norra Kärr (Sweden), Tamazeght (Morocco), Lovozero, and Khibina (Russian Federation). Taken together, sodalite and eudialyte-group minerals dominate the Cl and Br budget of the investigated rocks. For F, however, several other phases (e.g., amphibole, fluorite, villiaumite, and minerals of the rinkite group and the apatite supergroup) are additional sinks, and parts of the S may be scavenged in generally rare sulfides. The investigated minerals contain Cl at the wt.% level, F and S concentrations are in the hundreds to thousands of µg/g-range, Br is less common (0.2–200 µg/g) and I is rare (mostly well below 1 µg/g). Normalized to Cl, sodalite prefers Br relative to eudialyte-group minerals, while F is always enriched in the latter. Our data show that both F and S may represent important components in eudialyte-group minerals, sometimes at similar levels as Cl, which normally dominates. Sulfur reveals redox-dependent behavior: Under reduced crystallization conditions, S is more compatible in eudialyte-group minerals (EGM) than in sodalite, which flips to the opposite under water-rich and presumably more oxidized conditions. We investigate the applicability of F/Cl, Br/Cl, and S/Cl ratios in these minerals in peralkaline systems to better understand the interplay of magmatic differentiation, fluid loss and hydrothermal overprint. Similar to apatite in metaluminous systems, fractionation of sodalite, and eudialyte-group minerals in peralkaline magmas leads to decreasing Br/Cl ratios. The data presented in this study bear implications for the mineral chemistry and compositional variation of sodalite and especially EGM in general. Volatile components in EGM that are not normally considered, such as F and S, can reach concentrations of thousands of µg/g. Especially in the case of F, with its low atomic weight, the results obtained in this study indicate that it is very significant for formulae calculations, neutral charge-balance, and similar aspects at such concentration levels. This study demonstrates that halogen contents and ratios are sensitive monitors for a variety of processes in magmatic-hydrothermal systems, including magmatic fractionation, volatile loss, and fluid–rock interaction.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Zhigang Zeng ◽  
Xiaoyuan Wang ◽  
Haiyan Qi ◽  
Bowen Zhu

Studies on the concentrations of arsenic (As) and antimony (Sb) in seawater columns are very important for tracing hydrothermal plumes and understanding fluid characteristics of seafloor hydrothermal systems. The total As, Sb, Mn, and Cl− concentrations of three hydrothermal plume seawater column samples have been studied at Stations 18G, 18K, and 18B in the eastern Manus back-arc basin, Bismarck Sea, Papua New Guinea. At Stations 18G and 18K, the plumes above North Su and near the Suzette site in the SuSu Knolls hydrothermal field are both enriched in As, Sb, and Mn and depleted in Cl, as a result of contribution of As-Sb-Mn-enriched and Cl-depleted vent fluid outputs to the hydrothermal plume, which is most likely generated in the subseafloor by fluid-rock interaction, magma degassing, or phase separation (boiling of hydrothermal fluid). The plume at Station 18B is enriched in As, Sb, Mn, and Cl, suggesting that As-Sb-Mn-Cl-enriched fluid discharges from vents, which have been generated by fluid-rock interaction. The concentrations of As and Sb anomalous layers, like manganese (Mn), are higher than those of the other layers in the three hydrothermal plume seawater columns. As and Sb with Mn showed a positive correlation (R2>0.8, p<0.05), and the distributions of As and Sb within the hydrothermal plume are not controlled by particle adsorption or biogeochemical cycles, suggesting that As and Sb, like Mn, can be used to detect and describe the characteristics of hydrothermal plumes in seawater environment. In addition, anomalous layer with As/Sb ratio lower than those of ambient seawater at the same temperature is found in the eastern Manus basin, suggesting that the As/Sb ratio may also act as an effective tracer reflecting the effect of hydrothermal activity on As and Sb in the seawater column.


2019 ◽  
Vol 486 (5) ◽  
pp. 593-597
Author(s):  
E. O. Dubinina ◽  
N. S. Bortnikov

A model of sulfur isotope distribution at modern submarine hydrothermal systems is proposed. It is assumed that thermogenic sulfate reduction at the water-rock interaction zone takes place under closed system conditions respectively to fluid phase. As a result, the Rayleigh exhaustion with respect to the 32S isotope arises in the fluid. The model also takes into account the simultaneous extraction of reduced sulfur from surrounding rocks. The calculated fraction of extracted sulfur at the total content of reduced sulfur in the fluid varies from 0.15 to 0.06 for submarine systems associated with tholeiitic basalts and peridotites, respectively. The model application to published data can explain the well-known contradictions that have arisen during the study of the sulfur isotope composition of sulfides from world Ocean deep-sea edifices.


2019 ◽  
Vol 20 (12) ◽  
pp. 5849-5866
Author(s):  
Frederike K. Wilckens ◽  
Eoghan P. Reeves ◽  
Wolfgang Bach ◽  
Jeffrey S. Seewald ◽  
Simone A. Kasemann

Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 919
Author(s):  
Paolo Fulignati

The study of active and fossil hydrothermal systems shows clay minerals to be a fundamental tool for the identification and characterization of hydrothermal alteration facies. The occurrence and composition of hydrothermal alteration facies could provide useful information on the physicochemical conditions of the hydrothermal activity affecting a rock volume. In particular, clay minerals (i.e., smectite group, chlorite, illite, kaoline group, pyrophyllite, biotite) are pivotal for extrapolating important parameters that strongly affect the development of water/rock interaction processes such as the temperature and pH of the hydrothermal environment. This work aims to give a general reference scheme concerning the occurrence of clay minerals in hydrothermal alteration paragenesis, their significance, and the information that can be deduced by their presence and chemical composition, with some examples from active and fossil hydrothermal systems around the world. The main mineralogical geothermometers based on chlorite and illite composition are presented, together with the use of hydrogen and oxygen isotope investigation of clay minerals in hydrothermal systems. These techniques provide a useful tool for the reconstruction of the origin and evolution of fluids involved in hydrothermal alteration. Finally, a list of oxygen and hydrogen fractionation factor equations between the main clay minerals and water is also provided.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yanyan Hou ◽  
Zheming Shi ◽  
Wenqing Mu

The geochemical and geothermal characteristics of hydrothermal systems in an area are useful information to appropriately evaluate the geothermal potential. In this paper, we investigated the chemical and isotopic composition of thermal water in an underexploited geothermal belt, Yidun-Litang area, in eastern Tibetan Plateau. 24 hot spring samples from the Yidun and Litang area were collected and analyzed. The water chemical types of the hot springs are mainly Na-HCO3-type water. Water-rock interaction and cation exchange and mixture are the dominant hydrogeochemical processes in the hydrothermal evolution. The significant shift of D and 18O isotopes from the GMWL indicates that these springs have undergone subsurface boiling before rising to the surface. Different ratios of Cl to other conservation species can be found for the springs in Litang and Yidun areas, suggesting the different heat sources of the two hydrothermal systems. The reservoir temperature in the Yidun area is around 230°C while the reservoir temperature in the Litang area is around 200°C. Both hydrothermal systems are recharged by the meteoric water and are heated by the different deep, thermally and topographically driven convection heat along faults and undergoing subsurface boiling before going back to the surface.


Sign in / Sign up

Export Citation Format

Share Document