Designing Rainwater Harvesting Systems for Large-Scale Potable Water Saving Using Spatial Information System

Author(s):  
Yie-Ru Chiu ◽  
Chao-Hsien Liaw
Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 752 ◽  
Author(s):  
Yie-Ru Chiu ◽  
Kamaleddin Aghaloo ◽  
Babak Mohammadi

Rainwater harvesting systems (RWHSs) have been accepted as a simple and effective approach to ease the worsening of urban water stress. However, in arid and semiarid regions, a comprehensive method for promoting domestic RWHSs in a large-scale water-saving scheme that incorporates water consumption reducing equipment (WCRE) and gray water reuse (GWR), has not been well developed. For this, based on the case study of Guilan Province, Iran, this study addressed the temporal-spatial complex of rainfall and proposed a GIS-simulation-based decision support system (DSS). Herein, two scenarios, i.e., the typical RWHS and the modified RWHS for arid areas, were tested; and the associated economic analysis was performed and compared with WCRE and GWR. Moreover, for larger-scale implementation, the multiple criteria decision making (MCDM) technique was further applied to address the social-environmental complexity of these water-saving methods. Guilan Province has thereby been classified into three priority levels, providing a straightforward understanding of how to promote the large-scale water-saving scheme. Compared with the traditional generalized method, sensitivity analysis verified that this DSS enhanced the information value. Hence, the DSS that provides more holistic and comprehensive support has been identified as a useful tool to ease the threat of urban water stress.


2018 ◽  
Vol 45 ◽  
pp. 00078
Author(s):  
Grażyna Sakson

Rainwater harvesting is an alternative water supply method that has become popular in recent years around the world. This is mainly due to financial reasons (reducing the cost of potable water and fees for rainwater discharge to the sewerage), but also because of environmental awareness. In Poland, rainwater harvesting systems are not often used because of their low financial viability determined by high system construction costs and the low prices of potable water. Earlier analysis conducted by the author showed that the payback period of investment outlays was from a dozen or so years for large buildings, to a few dozen for single-family houses. This situation may change after the introduction of common fees for discharging rainwater from impervious areas into sewerage, and fees for the reduction of natural retention on newly built-up areas, in accordance with new water regulations. This paper presents a cost analysis of rainwater harvesting systems for ten cities in Poland, with varying annual rainfall depth and various pricing for potable water. Analyses were carried out for a single-family house located in an area equipped with a municipal sewer system, and for a large building, located in an area equipped and not equipped with a municipal sewer system.


2013 ◽  
Vol 67 (11) ◽  
pp. 2511-2518 ◽  
Author(s):  
A. Campisano ◽  
I. Gnecco ◽  
C. Modica ◽  
A. Palla

Nowadays domestic rainwater harvesting practices are recognized as effective tools to improve the sustainability of drainage systems within the urban environment, by contributing to limiting the demand for potable water and, at the same time, by mitigating the generation of storm water runoff at the source. The final objective of this paper is to define regression curves to size domestic rainwater harvesting (DRWH) systems in the main Italian climatic regions. For this purpose, the Köppen–Geiger climatic classification is used and, furthermore, suitable precipitation sites are selected for each climatic region. A behavioural model is implemented to assess inflow, outflow and change in storage volume of a rainwater harvesting system according to daily mass balance simulations based on historical rainfall observations. The performance of the DRWH system under various climate and operational conditions is examined as a function of two non-dimensional parameters, namely the demand fraction (d) and the modified storage fraction (sm). This last parameter allowed the evaluation of the effects of the rainfall intra-annual variability on the system performance.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2351 ◽  
Author(s):  
Cureau ◽  
Ghisi

This article aims to estimate the reduction of potable water consumption and sewage generation in the city of Joinville, southern Brazil. Four strategies were considered to promote potable water savings: replacement of conventional toilets with dual-flush ones, greywater reuse, rainwater harvesting, and the combination of these three strategies. Residential, public, and commercial sectors were assessed. The potential for potable water savings ranged from 1.7% to 50.5%, and the potential for sewage generation reduction ranged from 2.1% to 52.1%. The single-family residential sector was the most representative for water savings and sewage generation reduction. The public sector would be the least contributor to such reductions. It was found that in the city of Joinville, for low non-potable water demands, greywater reuse was the most viable strategy to save water. When non-potable demand is high and there is a large catchment area, it is recommended to install rainwater harvesting systems. It was concluded that there is a high potential for potable water savings and reduction of sewage generation if measures were adopted in Joinville, but it is necessary to evaluate which strategy is the most appropriate for each building.


2018 ◽  
Vol 196 ◽  
pp. 1341-1355 ◽  
Author(s):  
Shouhong Zhang ◽  
Jianjun Zhang ◽  
Xueer Jing ◽  
Yujie Wang ◽  
Yunqi Wang ◽  
...  

2020 ◽  
Author(s):  
Elena Cristiano ◽  
Stefano Farris ◽  
Roberto Deidda ◽  
Francesco Viola

<p><strong> </strong>The growth of urbanization and the intensification of extreme rainfall events, that has characterized the last century, are leading to an increase of pluvial floods, which are becoming a significant problem in many cities. Among the different solutions proposed and developed to mitigate flood risk in urban areas, green roofs and rainwater harvesting systems have been deeply investigated to reduce the runoff contribution generated from rooftops. These tools have been largely studied at small scale, analysing the flood reduction that can be achieved from one single building or in a small neighbourhood, without considering the large-scale effects. In this work, the potential impact of the installation of green-blue solutions on all the rooftops of a city is evaluated, assuming to place green roofs on flat roofs and rainwater harvesting systems on sloped ones. We investigated nine cities from 5 different countries (Canada, Haiti, United Kingdom, Italy and New Zealand), representing different climatological and geomorphological characteristics. The behaviour of the blue-green solution was estimated with the help of a conceptual lumped ecohydrological model and the mass conservation, using rainfall and temperature time series as climatological input to derive the discharge reduction for different scenarios. Due to the high percentage of sloped roofs in most of the investigated locations, the cost-efficiency analysis highlights that the large-scale installation of rainwater harvesting tanks enables to achieve higher mitigation capacity than green roofs at lower cost. Green roofs, however, present many additional benefits (such as biodiversity contribution, thermal insulation for buildings, pollution reduction and increase of aesthetic added value) that need to be evaluated by urban planners and policy makers. The best achievable performance is given by the coupled system of rainwater harvesting tanks and intensive green roofs: for extreme rainfall events this solution guarantees a discharge reduction up to 20% in most of the cities.</p>


2017 ◽  
Vol 148 ◽  
pp. 304-313 ◽  
Author(s):  
Vitoria A.R. Lopes ◽  
Guilherme Fernandes Marques ◽  
Fernando Dornelles ◽  
Josue Medellin-Azuara

Sign in / Sign up

Export Citation Format

Share Document