Imitation Learning from Unsegmented Human Motion Using Switching Autoregressive Model and Singular Vector Decomposition

Author(s):  
Tadahiro Taniguchi ◽  
Naoto Iwahashi
Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4886
Author(s):  
Shilei Li ◽  
Maofang Gao ◽  
Zhao-Liang Li

A series of algorithms for satellite retrievals of sun-induced chlorophyll fluorescence (SIF) have been developed and applied to different sensors. However, research on SIF retrieval using hyperspectral data is performed in narrow spectral windows, assuming that SIF remains constant. In this paper, based on the singular vector decomposition (SVD) technique, we present an approach for retrieving SIF, which can be applied to remotely sensed data with ultra-high spectral resolution and in a broad spectral window without assuming that the SIF remains constant. The idea is to combine the first singular vector, the pivotal information of the non-fluorescence spectrum, with the low-frequency contribution of the atmosphere, plus a linear combination of the remaining singular vectors to express the non-fluorescence spectrum. Subject to instrument settings, the retrieval was performed within a spectral window of approximately 7 nm that contained only Fraunhofer lines. In our retrieval, hyperspectral data of the O2-A band from the first Chinese carbon dioxide observation satellite (TanSat) was used. The Bayesian Information Criterion (BIC) was introduced to self-adaptively determine the number of free parameters and reduce retrieval noise. SIF retrievals were compared with TanSat SIF and OCO-2 SIF. The results showed good consistency and rationality. A sensitivity analysis was also conducted to verify the performance of this approach. To summarize, the approach would provide more possibilities for retrieving SIF from hyperspectral data.


Author(s):  
Bin Li ◽  
Jian Tian ◽  
Zhongfei Zhang ◽  
Hailin Feng ◽  
Xi Li

2008 ◽  
Vol 20 (4) ◽  
pp. 567-577 ◽  
Author(s):  
Tadahiro Taniguchi ◽  
◽  
Naoto Iwahashi ◽  
Komei Sugiura ◽  
Tetsuo Sawaragi ◽  
...  

This paper presents a novel method of a robot learning through imitation to acquire a user’s key motions automatically. The learning architecture mainly consists of three learning modules: a switching autoregressive model (SARM), a keyword extractor without a dictionary, and a keyword selection filter that references to the tutor’s reactions. Most previous research on imitation learning by autonomous robots targeted motions given to robots, were segmented into meaningful parts by the users or researchers in advance. To imitate certain behavior from continuous human motion, however, robots must find segments to be learned. To achieve this goal, the learning architecture converts a continuous time series into a discrete time series of letters using the SARM, finds meaningful segments using the keyword extractor without a dictionary, and removes less s meaningful segments from keywords using the user's reactions. In experiments, an operator showed unsegmented motions to a robot, and reacted to the motions the robot had acquired. Results showed that this framework enabled the robot to obtain several meaningful motions that the operator hoped it would acquire.


2009 ◽  
Vol 2 (2) ◽  
pp. 1185-1219
Author(s):  
J. Hurley ◽  
A. Dudhia ◽  
R. G. Grainger

Abstract. Clouds are increasingly recognised for their influence on the radiative balance of the Earth and the implications that they have on possible climate change, as well as in air pollution and acid-rain production. However, clouds remain a major source of uncertainty in climate models. Satellite-borne high-resolution limb sounders, such as the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard ENVISAT, provide information on clouds, especially optically thin clouds, which have been difficult to observe in the past. The aim of this work is to develop, implement and test a reliable cloud detection method for infrared spectra measured by MIPAS. Current MIPAS cloud detection methods used operationally have been developed to detect thick cloud filling more than 30% of the measurement field-of-view (FOV). In order to resolve thin clouds, a new detection method using Singular Vector Decomposition (SVD) is formulated and tested. A rigorous comparison of the current operational and newly-developed detection methods for MIPAS is carried out – and the new SVD detection method has been proven to be much more reliable than the current operational method, and very sensitive even to thin clouds only marginally filling the MIPAS FOV.


Author(s):  
Lailil Muflikhah ◽  
Nashi Widodo ◽  
Wayan Firdaus Mahmudy ◽  
Solimun - ◽  
Ninik Nihayatul Wahibah

Sign in / Sign up

Export Citation Format

Share Document