DNS of turbulent transport of scalar concentration in various thermally stratified boundary layers

Author(s):  
H. Hattori ◽  
S. Yamazaki ◽  
Y. Nagano
Author(s):  
Christian Eichler ◽  
Thomas Sattelmayer

Premixed combustion of hydrogen-rich mixtures involves the risk of flame flashback through wall boundary layers. For laminar flow conditions, the flashback mechanism is well understood and is usually correlated by a critical velocity gradient at the wall. Turbulent transport inside the boundary layer considerably increases the flashback propensity. Only tube burner setups have been investigated in the past and thus turbulent flashback limits were only derived for a fully-developed Blasius wall friction profile. For turbulent flows, details of the flame propagation in proximity to the wall remain unclear. This paper presents results from a new experimental combustion rig, apt for detailed optical investigations of flame flashbacks in a turbulent wall boundary layer developing on a flat plate and being subject to an adjustable pressure gradient. Turbulent flashback limits are derived from the observed flame position inside the measurement section. The fuels investigated cover mixtures of methane, hydrogen and air at various mixing ratios. The associated wall friction distributions are determined by RANS computations of the flow inside the measurement section with fully resolved boundary layers. Consequently, the interaction between flame back pressure and incoming flow is not taken into account explicitly, in accordance with the evaluation procedure used for tube burner experiments. The results are compared to literature values and the critical gradient concept is reviewed in light of the new data.


Author(s):  
F. E. Ames ◽  
L. A. Dvorak

The objective of this research has been to experimentally investigate the fluid dynamics of pin fin arrays in order to clarify the physics of heat transfer enhancement and uncover problems in conventional turbulence models. The fluid dynamics of a staggered pin fin array have been studied using hot wire anemometry with both single and x-wire probes at array Reynolds numbers of 3000; 10,000; and 30,000. Velocity distributions off the endwall and pin surface have been acquired and analyzed to investigate turbulent transport in pin fin arrays. Well resolved 3-D calculations have been performed using a commercial code with conventional two-equation turbulence models. Predictive comparisons have been made with fluid dynamic data. In early rows where turbulence is low, the strength of shedding increases dramatically with increasing in Reynolds numbers. The laminar velocity profiles off the surface of pins show evidence of unsteady separation in early rows. In row three and beyond laminar boundary layers off pins are quite similar. Velocity profiles off endwalls are strongly affected by the proximity of pins and turbulent transport. At the low Reynolds numbers, the turbulent transport and acceleration keep boundary layers thin. Endwall boundary layers at higher Reynolds numbers exhibit very high levels of skin friction enhancement. Well resolved 3-D steady calculations were made with several two-equation turbulence models and compared with experimental fluid mechanic and heat transfer data. The quality of the predictive comparison was substantially affected by the turbulence model and near wall methodology.


1983 ◽  
Vol 105 (2) ◽  
pp. 146-153 ◽  
Author(s):  
P. M. Ligrani ◽  
R. J. Moffat ◽  
W. M. Kays

Thermal and hydrodynamic characteristics of boundary layers developing over uniform spheres roughness with momentum thicknesses as large as 1.43 cm are presented. To obtain thick hydrodynamic boundary layers, an artificial thickening device is employed. The normalized velocity and turbulence profiles produced using this device are two-dimensional and self-preserving. The turbulent transport and structural characteristics are representative of normal behavior to the level of spectra of the longitudinal velocity fluctuations. In the artificially thickened layers, the effect of the unheated starting length (ξ > 0, Δ < δ) on thermal boundary layer properties is present. Turbulent Prandtl number profiles are generally unaffected by the magnitude of the unheated starting length, whereas measured Stanton numbers, show different behavior as the unheated starting length varies. In thermal boundary layers which would have the same thickness as the augmented hydrodynamic layers (Δ ≃ δ), Stanton numbers are shown to be the same as skin friction coefficients, and are then provided for boundary layers much thicker than those previously studied. As fully rough boundary layers develop downstream and δ/ks increases, Cf/2 is proportional to δ2−b where b = 0.175. In order for such U∞ = constant, thick, rough wall layers to develop far enough downstream to reach smooth behavior where b = 0.250, ks Uτ/ν must become small, and b must increase from 0.175 to become greater than 0.250 in the transitionally rough regime.


Author(s):  
Marcio Cataldi ◽  
Juliana B. R. Loureiro ◽  
Atila P. Silva Freire

The objective of this work is to develop, in a wind tunnel environment, boundary layers with different states of development that simulate the structure present in the atmospheric boundary layer. The work analyses the dymamic and thermal characteristics of different types of thick, artificially-generated, turbulent boundary layers. The thermal boundary layer is obtained by two methods: wall surface heating, made through electrical resistance, can furnish an increase in wall temperature of up to 100 °C above the ambient temparatures and can be applied over a 5000 mm long surface with a controlled variation of 2 °C. The main flow heating is obtained by forcing the flow pass through an array of copper wires whose elements can be heated individually. The main flow can be heated up to 100 °C. The whole system can then be used to produce unstable, neutral and stable boundary layers. The parameters of the thermal boundary layers are qualified according to the following parameters: growth, structure, equilibrium, turbulent transport of heat and energy spectrum. The paper describes in detail the experimental arrangements, including the geometry of the wind tunnel and the instrumentation.


1997 ◽  
Vol 349 ◽  
pp. 1-30 ◽  
Author(s):  
N. R. PANCHAPAKESAN ◽  
T. B. NICKELS ◽  
P. N. JOUBERT ◽  
A. J. SMITS

Experimental measurements are presented showing the effects of streamline convergence on developing turbulent boundary layers. The longitudinal pressure-gradient in these experiments is nominally zero so the only extra rate-of-strain is the lateral convergence. Measurements have been made of mean flow and turbulence quantities at two different Reynolds numbers. The results show that convergence leads to a significant reduction in the skin-friction and an increase in the boundary layer thickness. There are also large changes in the Reynolds stresses with reductions occurring in the inner region and some increase in the outer flow. This is in contrast to the results of Saddoughi & Joubert (1991) for a diverging flow of the same included angle and zero pressure-gradient which show much smaller changes in the stresses and an approach to equilibrium. A new non-dimensional parameter, βD, is proposed to characterize the local effect of the convergence and it is shown how this parameter is related to Clauser's pressure-gradient parameter, βx. It is suggested that this is an equilibrium parameter for turbulent boundary layers with lateral straining. In the present flow case βD increases rapidly with streamwise distance leading to a significant departure from equilibrium. Measurement of terms in the transport equations suggest that streamline convergence leads to a reduction in production and generation and large increases in mean advection. The recovery of the flow after the removal of convergence has been shown to be characterized by a significant increase in the turbulent transport of shear-stress and turbulent kinetic energy from the very near-wall region to the flow further out where the stresses have been depleted by convergence.


2016 ◽  
Vol 93 (4) ◽  
Author(s):  
Mark Peter Rast ◽  
Jean-François Pinton ◽  
Pablo D. Mininni

2005 ◽  
Vol 128 (1) ◽  
pp. 71-81 ◽  
Author(s):  
F. E. Ames ◽  
L. A. Dvorak

The objective of this research has been to experimentally investigate the fluid dynamics of pin fin arrays in order to clarify the physics of heat transfer enhancement and uncover problems in conventional turbulence models. The fluid dynamics of a staggered pin fin array has been studied using hot wire anemometry with both single- and x-wire probes at array Reynolds numbers of 3000, 10,000, and 30,000. Velocity distributions off the endwall and pin surface have been acquired and analyzed to investigate turbulent transport in pin fin arrays. Well resolved 3D calculations have been performed using a commercial code with conventional two-equation turbulence models. Predictive comparisons have been made with fluid dynamic data. In early rows where turbulence is low, the strength of shedding increases dramatically with increasing Reynolds numbers. The laminar velocity profiles off the surface of pins show evidence of unsteady separation in early rows. In row three and beyond, laminar boundary layers off pins are quite similar. Velocity profiles off endwalls are strongly affected by the proximity of pins and turbulent transport. At the low Reynolds numbers, the turbulent transport and acceleration keep boundary layers thin. Endwall boundary layers at higher Reynolds numbers exhibit very high levels of skin friction enhancement. Well-resolved 3D steady calculations were made with several two-equation turbulence models and compared with experimental fluid mechanic and heat transfer data. The quality of the predictive comparison was substantially affected by the turbulence model and near-wall methodology.


1990 ◽  
Vol 217 ◽  
pp. 299-330 ◽  
Author(s):  
Werner J. A. Dahm ◽  
Paul E. Dimotakis

We present results from an experimental investigation of turbulent transport and molecular mixing of a Sc [Gt ] 1 conserved scalar in the fully developed self-similar far field of a steady, axisymmetric, momentum-driven, free turbulent jet issuing into a quiescent medium. Our experiments cover the axial range from the jet exit to 350 diameters downstream, and span the range of Reynolds numbers from 1500 to 20000. Flow visualizations of the scalar concentration field directly verify the presence of an underlying characteristic large-scale organization in the jet far field essentially consistent with a simplified conceptual picture proposed in an earlier study (Dahm & Dimotakis 1987). High-resolution imaging measurements of successive instantaneous scalar concentration profiles in the jet support the presence of such a large-scale organization and provide details of its implications for mixing. These results also establish the proper similarity scaling for the mean concentration in the jet far field and give the scaling constant on the jet centreline as 5.4. We also present conserved scalar concentration p.d.f.s throughout the jet far field, and introduce a chemical reaction method for measuring the p.d.f.s with potentially molecular resolution. The amount of unmixed ambient fluid that reaches the jet centreline is found to decrease with increasing Reynolds number over the range investigated. The distribution of mixed fluid compositions in the concentration p.d.f. also appears to change over this range of Reynolds numbers, indicating that some aspects of large Schmidt number mixing in the jet far field have not yet become Reynolds number independent.


2016 ◽  
Author(s):  
Shouping Wang ◽  
Qingfang Jiang

Abstract. Quasi two-dimensional roll vortices are frequently observed in hurricane boundary layers. It is believed that this highly coherent structure, likely caused by the inflection point instability, plays an important role in organizing turbulent transport. Large-eddy simulations are conducted to investigate the impact of wind shear characteristics such as the shear strength and inflection-point level on the roll structure in terms of its spectral characteristics and turbulence organization. A mean wind profile nudging approach is used in the simulations to maintain the specified mean wind shear without directly affecting turbulent motions. Enhancing the radial wind shear expands the roll horizontal scale and strengthens the roll's kinetic energy. Increasing the inflection-point level tends to produce a narrow and sharp peak in the power spectrum at the wavelength consistent with the roll spacing indicated by the instantaneous turbulent fields. The spectral tangential momentum flux, in particular, reaches a strong peak value at the roll wavelength. In contrast, the spectral radial momentum flux obtains its maximum at the wavelength that is usually shorter than the roll's, suggesting that the roll radial momentum transport is less efficient than the tangential. The most robust rolls are produced in a simulation with the highest inflection-point level and relatively strong radial wind shear. Based on the spectral analysis, the roll-scale contribution to the turbulent momentum flux can reach 40 % in the middle of the boundary layer.


Sign in / Sign up

Export Citation Format

Share Document