Improving Multilabel Classification Performance by Using Ensemble of Multi-label Classifiers

Author(s):  
Muhammad Atif Tahir ◽  
Josef Kittler ◽  
Krystian Mikolajczyk ◽  
Fei Yan
2018 ◽  
Vol 30 (2) ◽  
pp. 526-545
Author(s):  
Xiaowei Zhao ◽  
Zhigang Ma ◽  
Zhi Li ◽  
Zhihui Li

In recent years, multilabel classification has attracted significant attention in multimedia annotation. However, most of the multilabel classification methods focus only on the inherent correlations existing among multiple labels and concepts and ignore the relevance between features and the target concepts. To obtain more robust multilabel classification results, we propose a new multilabel classification method aiming to capture the correlations among multiple concepts by leveraging hypergraph that is proved to be beneficial for relational learning. Moreover, we consider mining feature-concept relevance, which is often overlooked by many multilabel learning algorithms. To better show the feature-concept relevance, we impose a sparsity constraint on the proposed method. We compare the proposed method with several other multilabel classification methods and evaluate the classification performance by mean average precision on several data sets. The experimental results show that the proposed method outperforms the state-of-the-art methods.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 322
Author(s):  
Qinghua Wu ◽  
Bin Wu ◽  
Chengyu Hu ◽  
Xuesong Yan

As one of the common methods to construct classifiers, naïve Bayes has become one of the most popular classification methods because of its solid theoretical basis, strong prior knowledge learning characteristics, unique knowledge expression forms, and high classification accuracy. This classification method has a symmetry phenomenon in the process of data classification. Although the naïve Bayes classifier has high classification performance in single-label classification problems, it is worth studying whether the multilabel classification problem is still valid. In this paper, with the naïve Bayes classifier as the basic research object, in view of the naïve Bayes classification algorithm’s shortage of conditional independence assumptions and label class selection strategies, the characteristics of weighted naïve Bayes is given a better label classifier algorithm framework; the introduction of cultural algorithms to search for and determine the optimal weights is proposed as the weighted naïve Bayes multilabel classification algorithm. Experimental results show that the algorithm proposed in this paper is superior to other algorithms in classification performance.


Author(s):  
Diane Pecher ◽  
Inge Boot ◽  
Saskia van Dantzig ◽  
Carol J. Madden ◽  
David E. Huber ◽  
...  

Previous studies (e.g., Pecher, Zeelenberg, & Wagenmakers, 2005) found that semantic classification performance is better for target words with orthographic neighbors that are mostly from the same semantic class (e.g., living) compared to target words with orthographic neighbors that are mostly from the opposite semantic class (e.g., nonliving). In the present study we investigated the contribution of phonology to orthographic neighborhood effects by comparing effects of phonologically congruent orthographic neighbors (book-hook) to phonologically incongruent orthographic neighbors (sand-wand). The prior presentation of a semantically congruent word produced larger effects on subsequent animacy decisions when the previously presented word was a phonologically congruent neighbor than when it was a phonologically incongruent neighbor. In a second experiment, performance differences between target words with versus without semantically congruent orthographic neighbors were larger if the orthographic neighbors were also phonologically congruent. These results support models of visual word recognition that assume an important role for phonology in cascaded access to meaning.


2012 ◽  
Vol 58 (4) ◽  
pp. 425-431 ◽  
Author(s):  
D. Selvathi ◽  
N. Emimal ◽  
Henry Selvaraj

Abstract The medical imaging field has grown significantly in recent years and demands high accuracy since it deals with human life. The idea is to reduce human error as much as possible by assisting physicians and radiologists with some automatic techniques. The use of artificial intelligent techniques has shown great potential in this field. Hence, in this paper the neuro fuzzy classifier is applied for the automated characterization of atheromatous plaque to identify the fibrotic, lipidic and calcified tissues in Intravascular Ultrasound images (IVUS) which is designed using sixteen inputs, corresponds to sixteen pixels of instantaneous scanning matrix, one output that tells whether the pixel under consideration is Fibrotic, Lipidic, Calcified or Normal pixel. The classification performance was evaluated in terms of sensitivity, specificity and accuracy and the results confirmed that the proposed system has potential in detecting the respective plaque with the average accuracy of 98.9%.


2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

<div>Classification has become a vital task in modern machine learning and Artificial Intelligence applications, including smart sensing. Numerous machine learning techniques are available to perform classification. Similarly, numerous practices, such as feature selection (i.e., selection of a subset of descriptor variables that optimally describe the output), are available to improve classifier performance. In this paper, we consider the case of a given supervised learning classification task that has to be performed making use of continuous-valued features. It is assumed that an optimal subset of features has already been selected. Therefore, no further feature reduction, or feature addition, is to be carried out. Then, we attempt to improve the classification performance by passing the given feature set through a transformation that produces a new feature set which we have named the “Binary Spectrum”. Via a case study example done on some Pulsed Eddy Current sensor data captured from an infrastructure monitoring task, we demonstrate how the classification accuracy of a Support Vector Machine (SVM) classifier increases through the use of this Binary Spectrum feature, indicating the feature transformation’s potential for broader usage.</div><div><br></div>


Author(s):  
Inzamam Mashood Nasir ◽  
Muhammad Rashid ◽  
Jamal Hussain Shah ◽  
Muhammad Sharif ◽  
Muhammad Yahiya Haider Awan ◽  
...  

Background: Breast cancer is considered as the most perilous sickness among females worldwide and the ratio of new cases is expanding yearly. Many researchers have proposed efficient algorithms to diagnose breast cancer at early stages, which have increased the efficiency and performance by utilizing the learned features of gold standard histopathological images. Objective: Most of these systems have either used traditional handcrafted features or deep features which had a lot of noise and redundancy, which ultimately decrease the performance of the system. Methods: A hybrid approach is proposed by fusing and optimizing the properties of handcrafted and deep features to classify the breast cancer images. HOG and LBP features are serially fused with pretrained models VGG19 and InceptionV3. PCR and ICR are used to evaluate the classification performance of proposed method. Results: The method concentrates on histopathological images to classify the breast cancer. The performance is compared with state-of-the-art techniques, where an overall patient-level accuracy of 97.2% and image-level accuracy of 96.7% is recorded. Conclusion: The proposed hybrid method achieves the best performance as compared to previous methods and it can be used for the intelligent healthcare systems and early breast cancer detection.


Sign in / Sign up

Export Citation Format

Share Document