Multi-Walled Carbon Nanotubes Effect on Mechanical Properties of High Performance Fiber/Epoxy Nanocomposite

Author(s):  
Mehdi Taghavi Deilamani ◽  
Omid Saligheh ◽  
Rouhollah Arasteh
Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3591 ◽  
Author(s):  
Lee ◽  
Kim ◽  
Park

This study aimed to investigate the effect of multi-walled carbon nanotubes (MWCNTs) and steel fibers on the AC impedance and electromagnetic shielding effectiveness (SE) of a high-performance, fiber-reinforced cementitious composite (HPFRCC). The electrical conductivity of the 100 MPa HPFRCC with 0.30% MWCNT was 0.093 S/cm and that of the 180 MPa HPFRCC with 0.4% MWCNT and 2.0% steel fiber was 0.10 S/cm. At 2.0% steel fiber and 0.3% MWCNT contents, the electromagnetic SE values of the HPFRCC were 45.8 dB (horizontal) and 42.1 dB (vertical), which are slightly higher than that (37.9 dB (horizontal)) of 2.0% steel fiber content and that (39.2 dB (horizontal)) of 0.3% MWCNT content. The incorporation of steel fibers did not result in any electrical percolation path in the HPFRCC at the micro level; therefore, a high electrical conductivity could not be achieved. At the macro level, the proper dispersion of the steel fibers into the HPFRCC helped reflect and absorb the electromagnetic waves, increasing the electromagnetic SE. The incorporation of steel fibers helped improve the electromagnetic SE regardless of the formation of percolation paths, whereas the incorporation of MWCNTs helped improve the electromagnetic SE only when percolation paths were formed in the cement matrix.


2020 ◽  
Vol 27 (1) ◽  
pp. 433-444
Author(s):  
Wenhua Zhang ◽  
Weizhao Zeng ◽  
Yunsheng Zhang ◽  
Fenghao Yang ◽  
Peipei Wu ◽  
...  

AbstractIn this paper, the effects of multiwalled carbon nanotubes (MWCNTs) on the mechanical and damping properties of ultra-high performance concrete (UHPC) were investigated. The results show that the proper amount of MWCNTs can improve mechanical properties as well as the damping properties. For the mechanical properties, the compressive strength and flexural strength of the specimens increased with the increase of MWCNTs content in the range of 0~0.05% (mass ratio to cement). However, when the content of MWCNTs was more than 0.05wt.%, the mechanical properties of UHPC could not be improved continually because too many MWCNTs were difficult to disperse and agglomerated easily in UHPC. Similar laws also have been found for the damping property of UHPC. The loss factor of UHPC increased with the increase of MWCNTs content in the range of 0 ~ 0.05%. The incorporation of MWCNTs would introduce a large number of interfaces into UHPC, the friction and slip between interfaces were the main reasons for the improvement of the damping property of UHPC. However, when the content of MWCNTs was more than 0.05%, it was difficult to disperse effectively. As a result, the overall energy consumption efficiency of MWCNTs was decreased.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Seyed Ali Mirsalehi ◽  
Amir Ali Youzbashi ◽  
Amjad Sazgar

AbstractIn this study, epoxy hybrid nanocomposites reinforced by carbon fibers (CFs) were fabricated by a filament winding. To improve out-of-plane (transverse) mechanical properties, 0.5 and 1.0 Wt.% multi-walled carbon nanotubes (MWCNTs) were embedded into epoxy/CF composites. The MWCNTs were well dispersed into the epoxy resin without using any additives. The transverse mechanical properties of epoxy/MWCNT/CF hybrid nanocomposites were evaluated by the tensile test in the vertical direction to the CFs (90º tensile) and flexural tests. The fracture surfaces of composites were studied by scanning electron microscopy (SEM). The SEM observations showed that the bridging of the MWCNTs is one of the mechanisms of transverse mechanical properties enhancement in the epoxy/MWCNT/CF composites. The results of the 90º tensile test proved that the tensile strength and elongation at break of nanocomposite with 1.0 Wt.% MWCNTs improved up to 53% and 50% in comparison with epoxy/CF laminate composite, respectively. Furthermore, the flexural strength, secant modulus, and elongation of epoxy/1.0 Wt.% MWCNT/CF hybrid nanocomposite increased 15%, 7%, and 9% compared to epoxy/CF laminate composite, respectively.


Sign in / Sign up

Export Citation Format

Share Document