Adaptive Kernel Diverse Density Estimate for Multiple Instance Learning

Author(s):  
Tao Xu ◽  
Iker Gondra ◽  
David Chiu
Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1080
Author(s):  
Chao Wen ◽  
Zhan Li ◽  
Jian Qu ◽  
Qingchen Fan ◽  
Aiping Li

As a subject area of symmetry, multiple instance learning (MIL) is a special form of a weakly supervised learning problem where the label is related to the bag, not the instances contained in it. The difficulty of MIL lies in the incomplete label information of instances. To resolve this problem, in this paper, we propose a novel diverse density (DD) and multiple part similarity combination method for multiple instance learning, named MILDMS. First, we model the target concepts optimization with a DD function constraint on positive and negative instance space, which can greatly improve the robustness to label noise problem. Next, we combine the positive and negative instances in the bag (generated by hand-crafted and convolutional neural network features) with multiple part similarities to construct an MIL kernel. We evaluate the proposed approach on the MUSK dataset, whose results MUSK1 (91.9%) and MUSK2 (92.2%) show our method is comparable to other MIL algorithms. To further demonstrate generality, we also present experimental results on the PASCAL VOC 2007 and 2012 (46.5% and 42.2%) and COREL (78.6%) that significantly outperforms the state-of-the-art algorithms including deep MIL and other non-deep MIL algorithms.


2019 ◽  
Vol 34 ◽  
Author(s):  
Alper Demіr ◽  
Erkіn Çіlden ◽  
Faruk Polat

Abstract In the reinforcement learning context, a landmark is a compact information which uniquely couples a state, for problems with hidden states. Landmarks are shown to support finding good memoryless policies for Partially Observable Markov Decision Processes (POMDP) which contain at least one landmark. SarsaLandmark, as an adaptation of Sarsa(λ), is known to promise a better learning performance with the assumption that all landmarks of the problem are known in advance. In this paper, we propose a framework built upon SarsaLandmark, which is able to automatically identify landmarks within the problem during learning without sacrificing quality, and requiring no prior information about the problem structure. For this purpose, the framework fuses SarsaLandmark with a well-known multiple-instance learning algorithm, namely Diverse Density (DD). By further experimentation, we also provide a deeper insight into our concept filtering heuristic to accelerate DD, abbreviated as DDCF (Diverse Density with Concept Filtering), which proves itself to be suitable for POMDPs with landmarks. DDCF outperforms its antecedent in terms of computation speed and solution quality without loss of generality. The methods are empirically shown to be effective via extensive experimentation on a number of known and newly introduced problems with hidden state, and the results are discussed.


2021 ◽  
Author(s):  
Marc-Henri Bleu-Laine ◽  
Tejas G. Puranik ◽  
Dimitri N. Mavris ◽  
Bryan Matthews

2012 ◽  
Vol 31 (6) ◽  
pp. 1546-1548
Author(s):  
Chao WEN ◽  
Guo-hua GENG ◽  
zhan LI

Author(s):  
Xiaochuan Tang ◽  
Mingzhe Liu ◽  
Hao Zhong ◽  
Yuanzhen Ju ◽  
Weile Li ◽  
...  

Landslide recognition is widely used in natural disaster risk management. Traditional landslide recognition is mainly conducted by geologists, which is accurate but inefficient. This article introduces multiple instance learning (MIL) to perform automatic landslide recognition. An end-to-end deep convolutional neural network is proposed, referred to as Multiple Instance Learning–based Landslide classification (MILL). First, MILL uses a large-scale remote sensing image classification dataset to build pre-train networks for landslide feature extraction. Second, MILL extracts instances and assign instance labels without pixel-level annotations. Third, MILL uses a new channel attention–based MIL pooling function to map instance-level labels to bag-level label. We apply MIL to detect landslides in a loess area. Experimental results demonstrate that MILL is effective in identifying landslides in remote sensing images.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marleen M. Nieboer ◽  
Luan Nguyen ◽  
Jeroen de Ridder

AbstractOver the past years, large consortia have been established to fuel the sequencing of whole genomes of many cancer patients. Despite the increased abundance in tools to study the impact of SNVs, non-coding SVs have been largely ignored in these data. Here, we introduce svMIL2, an improved version of our Multiple Instance Learning-based method to study the effect of somatic non-coding SVs disrupting boundaries of TADs and CTCF loops in 1646 cancer genomes. We demonstrate that svMIL2 predicts pathogenic non-coding SVs with an average AUC of 0.86 across 12 cancer types, and identifies non-coding SVs affecting well-known driver genes. The disruption of active (super) enhancers in open chromatin regions appears to be a common mechanism by which non-coding SVs exert their pathogenicity. Finally, our results reveal that the contribution of pathogenic non-coding SVs as opposed to driver SNVs may highly vary between cancers, with notably high numbers of genes being disrupted by pathogenic non-coding SVs in ovarian and pancreatic cancer. Taken together, our machine learning method offers a potent way to prioritize putatively pathogenic non-coding SVs and leverage non-coding SVs to identify driver genes. Moreover, our analysis of 1646 cancer genomes demonstrates the importance of including non-coding SVs in cancer diagnostics.


2021 ◽  
Author(s):  
Min Yuan ◽  
Yitian Xu ◽  
Renxiu Feng ◽  
Zongmin Liu

Medicina ◽  
2021 ◽  
Vol 57 (6) ◽  
pp. 527
Author(s):  
Vijay Vyas Vadhiraj ◽  
Andrew Simpkin ◽  
James O’Connell ◽  
Naykky Singh Singh Ospina ◽  
Spyridoula Maraka ◽  
...  

Background and Objectives: Thyroid nodules are lumps of solid or liquid-filled tumors that form inside the thyroid gland, which can be malignant or benign. Our aim was to test whether the described features of the Thyroid Imaging Reporting and Data System (TI-RADS) could improve radiologists’ decision making when integrated into a computer system. In this study, we developed a computer-aided diagnosis system integrated into multiple-instance learning (MIL) that would focus on benign–malignant classification. Data were available from the Universidad Nacional de Colombia. Materials and Methods: There were 99 cases (33 Benign and 66 malignant). In this study, the median filter and image binarization were used for image pre-processing and segmentation. The grey level co-occurrence matrix (GLCM) was used to extract seven ultrasound image features. These data were divided into 87% training and 13% validation sets. We compared the support vector machine (SVM) and artificial neural network (ANN) classification algorithms based on their accuracy score, sensitivity, and specificity. The outcome measure was whether the thyroid nodule was benign or malignant. We also developed a graphic user interface (GUI) to display the image features that would help radiologists with decision making. Results: ANN and SVM achieved an accuracy of 75% and 96% respectively. SVM outperformed all the other models on all performance metrics, achieving higher accuracy, sensitivity, and specificity score. Conclusions: Our study suggests promising results from MIL in thyroid cancer detection. Further testing with external data is required before our classification model can be employed in practice.


Sign in / Sign up

Export Citation Format

Share Document