The Effect of Electrical Signals on Photosynthesis and Respiration

2012 ◽  
pp. 33-62 ◽  
Author(s):  
Andrej Pavlovič
2020 ◽  
pp. 15-23
Author(s):  
V. M. Grechishnikov ◽  
E. G. Komarov

The design and operation principle of a multi-sensor Converter of binary mechanical signals into electrical signals based on a partitioned fiber-optic digital-to-analog Converter with a parallel structure is considered. The digital-to-analog Converter is made from a set of simple and technological (three to five digit) fiber-optic digital-to-analog sections. The advantages of the optical scheme of the proposed. Converter in terms of metrological and energy characteristics in comparison with single multi-bit converters are justified. It is shown that by increasing the number of digital-analog sections, it is possible to repeatedly increase the information capacity of a multi-sensor Converter without tightening the requirements for its manufacturing technology and element base. A mathematical model of the proposed Converter is developed that reflects the features of its operation in the mode of sequential time conversion of the input code vectors of individual fiber-optic sections into electrical analogues and the formation of the resulting output code vector.


Author(s):  
E.B. Solovyeva ◽  
◽  
Yu.M. Inshakov ◽  

General approaches to the analysis of the Gibbs phenomenon for discontinuous periodic signals approximated by the truncated Fourier series are considered. Methods for smoothing the truncated Fourier series and improving its convergence are discussed. The software means for modeling is a universal measuring complex LabVIEW, which possesses a convenient environment for analyzing electrical signals, on the basis of this complex a laboratory experiment is carried out. The advantages of the measuring LabVIEW complex and its capabilities for in-depth study of discontinuous periodic signals are noted.


2021 ◽  
Vol 22 (15) ◽  
pp. 7905
Author(s):  
Zhongxun Yuan ◽  
Xilu Ni ◽  
Muhammad Arif ◽  
Zhi Dong ◽  
Limiao Zhang ◽  
...  

Submergence impedes photosynthesis and respiration but facilitates aerenchyma formation in bermudagrass. Still, the regulatory genes underlying these physiological responses are unclear in the literature. To identify differentially expressed genes (DEGs) related to these physiological mechanisms, we studied the expression of DEGs in aboveground and underground tissues of bermudagrass after a 7 d treatment under control (CK), shallow submergence (SS), and deep submergence (DS). Results show that compared with CK, 12276 and 12559 DEGs were identified under SS and DS, respectively. Among them, the DEGs closely related to the metabolism of chlorophyll biosynthesis, light-harvesting, protein complex, and carbon fixation were down-regulated in SS and DS. Meanwhile, a large number of DEGs involved in starch and sucrose hydrolase activities, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation were down-regulated in aboveground tissues of bermudagrass in SS and DS. Whereas in underground tissues of bermudagrass these DEGs were all up-regulated under SS, only beta-fructofuranosidase and α-amylase related genes were up-regulated under DS. In addition, we found that DEGs associated with ethylene signaling, Ca2+-ROS signaling, and cell wall modification were also up-regulated during aerenchyma formation in underground tissues of bermudagrass under SS and DS. These results provide the basis for further exploration of the regulatory and functional genes related to the adaptability of bermudagrass to submergence.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 634
Author(s):  
Agnieszka Kisielewicz ◽  
Karthikeyan Thalavai Pandian ◽  
Daniel Sthen ◽  
Petter Hagqvist ◽  
Maria Asuncion Valiente Bermejo ◽  
...  

This study investigates the influence of resistive pre-heating of the feedstock wire (here called hot-wire) on the stability of laser-directed energy deposition of Duplex stainless steel. Data acquired online during depositions as well as metallographic investigations revealed the process characteristic and its stability window. The online data, such as electrical signals in the pre-heating circuit and images captured from side-view of the process interaction zone gave insight on the metal transfer between the molten wire and the melt pool. The results show that the characteristics of the process, like laser-wire and wire-melt pool interaction, vary depending on the level of the wire pre-heating. In addition, application of two independent energy sources, laser beam and electrical power, allows fine-tuning of the heat input and increases penetration depth, with little influence on the height and width of the beads. This allows for better process stability as well as elimination of lack of fusion defects. Electrical signals measured in the hot-wire circuit indicate the process stability such that the resistive pre-heating can be used for in-process monitoring. The conclusion is that the resistive pre-heating gives additional means for controlling the stability and the heat input of the laser-directed energy deposition.


Sign in / Sign up

Export Citation Format

Share Document