Modeling of the Lithium Battery Cell for Plug-In Hybrid Electric Vehicle Using Electrochemical Impedance Spectroscopy

Author(s):  
Hyun-sik Song ◽  
Tae-Hoon Kim ◽  
Jin-Beom Jeong ◽  
Dong-Hyun Shin ◽  
Baek-Haeng Lee ◽  
...  
2021 ◽  
Vol 12 (2) ◽  
pp. 77
Author(s):  
Md Sazzad Hosen ◽  
Rahul Gopalakrishnan ◽  
Theodoros Kalogiannis ◽  
Joris Jaguemont ◽  
Joeri Van Mierlo ◽  
...  

In electrified vehicle applications, understanding the battery characteristics is of great importance as it is the state-of-art principal energy source. The key battery parameters can be identified by one of the robust and nondestructive characterization techniques, such as electrochemical impedance spectroscopy (EIS). However, relaxing the battery cell before performing the EIS method is crucial for the characterization results to be standardized. In this study, the three most common and commercially available lithium-ion technologies (NMC/graphite, LFP/graphite, NCA/LTO) are investigated at 15–45 °C temperature, in the range of 20–80% state of charge (SoC) and in fresh and aged state of health (SoH) conditions. The analysis shows that the duration of the relaxation time before impedance measurement has an impact on the battery’s nonlinear behavior. A rest time of 2 h can be proposed, irrespective of battery health condition, considering neutral technology-based impedance measurement. An impedance growth in ohmic and charge transfer characteristics was found, due to aging, and the effect of rest periods was also analyzed from an electrochemical standpoint. This experimental data was fitted to develop an empirical model, which can predict the nonlinear dynamics of lithium technologies with a 4–8% relative error for longer rest time.


2012 ◽  
Vol 241-244 ◽  
pp. 259-264 ◽  
Author(s):  
Wang Li ◽  
Gen Wang Liu ◽  
Fu He Yang

A system of miniaturized lithium battery electrochemical impedance spectroscopy (EIS) measurement is designed with high precision impedance converter chip AD5933 as its core. The measurement range of the system is from 0.010Hz to 100 KHz. Meanwhile, by using a high-level programming language of C#, an interface is developed which can real-time graphic display of EIS information. Through measurement and analysis of two types of impedance, the results show that detection precision of the system is less than 3.5%. Finally, amplitude-frequency response curves and Nyquist plots of HL-18650 M lithium battery at different state of charge (SOC) levels are measured. Compared with lithium battery EIS measurement system by traditional division, this system has the outstanding advantages of small size, high level of integration, low cost, simple operation and high precision. It is helpful to the mass production and application of lithium battery EIS measurement system.


2013 ◽  
Vol 427-429 ◽  
pp. 824-829
Author(s):  
Li Cun Fang ◽  
Gang Xu ◽  
Tian Li Li ◽  
Ke Min Zhu

An accurate state-of-charge (SOC) estimation of the hybrid electric vehicle (HEV) and electric vehicle (EV) battery pack is a difficult task to be performed online in a vehicle because of the noisy and low accurate measurements and the wide operating conditions in which the vehicle battery can operate. A Sigma-points Kalman Filters (SPKF) algorithm based on an improved Lithium battery cell model to estimate the SOC of a Lithium battery cell is proposed in this paper. The simulation and experiment results show the effectiveness and ease of implementation of the proposed technique.


Sign in / Sign up

Export Citation Format

Share Document