scholarly journals Embedded Cyber-Physical Anomaly Detection in Smart Meters

Author(s):  
Massimiliano Raciti ◽  
Simin Nadjm-Tehrani
Author(s):  
Zhiru Chen ◽  
Liang Guo ◽  
Yan Du ◽  
Xianguang Dong ◽  
Yuxi Wang ◽  
...  

2021 ◽  
Vol 13 (19) ◽  
pp. 10963
Author(s):  
Simona-Vasilica Oprea ◽  
Adela Bâra ◽  
Florina Camelia Puican ◽  
Ioan Cosmin Radu

When analyzing smart metering data, both reading errors and frauds can be identified. The purpose of this analysis is to alert the utility companies to suspicious consumption behavior that could be further investigated with on-site inspections or other methods. The use of Machine Learning (ML) algorithms to analyze consumption readings can lead to the identification of malfunctions, cyberattacks interrupting measurements, or physical tampering with smart meters. Fraud detection is one of the classical anomaly detection examples, as it is not easy to label consumption or transactional data. Furthermore, frauds differ in nature, and learning is not always possible. In this paper, we analyze large datasets of readings provided by smart meters installed in a trial study in Ireland by applying a hybrid approach. More precisely, we propose an unsupervised ML technique to detect anomalous values in the time series, establish a threshold for the percentage of anomalous readings from the total readings, and then label that time series as suspicious or not. Initially, we propose two types of algorithms for anomaly detection for unlabeled data: Spectral Residual-Convolutional Neural Network (SR-CNN) and an anomaly trained model based on martingales for determining variations in time-series data streams. Then, the Two-Class Boosted Decision Tree and Fisher Linear Discriminant analysis are applied on the previously processed dataset. By training the model, we obtain the required capabilities of detecting suspicious consumers proved by an accuracy of 90%, precision score of 0.875, and F1 score of 0.894.


2019 ◽  
Vol 9 (19) ◽  
pp. 4193
Author(s):  
Michele Scarpiniti ◽  
Enzo Baccarelli ◽  
Alireza Momenzadeh ◽  
Aurelio Uncini

In this paper, we characterize the main building blocks and numerically verify the classification accuracy and energy performance of SmartFog, a distributed and virtualized networked Fog technological platform for the support for Stacked Denoising Auto-Encoder (SDAE)-based anomaly detection in data flows generated by Smart-Meters (SMs). In SmartFog, the various layers of an SDAE are pretrained at different Fog nodes, in order to distribute the overall computational efforts and, then, save energy. For this purpose, a new Adaptive Elitist Genetic Algorithm (AEGA) is “ad hoc” designed to find the optimized allocation of the SDAE layers to the Fog nodes. Interestingly, the proposed AEGA implements a (novel) mechanism that adaptively tunes the exploration and exploitation capabilities of the AEGA, in order to quickly escape the attraction basins of local minima of the underlying energy objective function and, then, speed up the convergence towards global minima. As a matter of fact, the main distinguishing feature of the resulting SmartFog paradigm is that it accomplishes the joint integration on a distributed Fog computing platform of the anomaly detection functionality and the minimization of the resulting energy consumption. The reported numerical tests support the effectiveness of the designed technological platform and point out that the attained performance improvements over some state-of-the-art competing solutions are around 5%, 68% and 30% in terms of detection accuracy, execution time and energy consumption, respectively.


Author(s):  
Uppuluri Sirisha ◽  
G. Lakshme Eswari

This paper briefly introduces Internet of Things(IOT) as a intellectual connectivity among the physical objects or devices which are gaining massive increase in the fields like efficiency, quality of life and business growth. IOT is a global network which is interconnecting around 46 million smart meters in U.S. alone with 1.1 billion data points per day[1]. The total installation base of IOT connecting devices would increase to 75.44 billion globally by 2025 with a increase in growth in business, productivity, government efficiency, lifestyle, etc., This paper familiarizes the serious concern such as effective security and privacy to ensure exact and accurate confidentiality, integrity, authentication access control among the devices.


2018 ◽  
Vol 18 (1) ◽  
pp. 20-32 ◽  
Author(s):  
Jong-Min Kim ◽  
Jaiwook Baik

2016 ◽  
Vol 136 (3) ◽  
pp. 363-372
Author(s):  
Takaaki Nakamura ◽  
Makoto Imamura ◽  
Masashi Tatedoko ◽  
Norio Hirai

2015 ◽  
Vol 135 (12) ◽  
pp. 749-755
Author(s):  
Taiyo Matsumura ◽  
Ippei Kamihira ◽  
Katsuma Ito ◽  
Takashi Ono

Sign in / Sign up

Export Citation Format

Share Document