2020 ◽  
Author(s):  
Anna Redina ◽  
Cora Wohlgemuth-Ueberwasser ◽  
Julia Mikhailova ◽  
Gregory Ivanyuk

<p>The Kovdor massif is a part of the Paleozoic Kola alkaline province and located in the eastern part of the Baltic Shield. Kovdor carbonatites host a unique complex baddeleyite-apatite-magnetite deposit from which iron ores and zirconium have been mined. New data on melt inclusions in olivine crystals from phoscorites and olivinites of the ore complex are presented in this contribution. Daughter minerals in crystallized melt inclusions were identified by Raman spectroscopy and scanning electron microscopy. The trace element composition of inclusions was determined using LA-ICP-MS.</p><p>Melt inclusions in olivine from Kovdor phoscorites are negative crystal or round in shape, with sizes ranging from 5 to 50 microns. They form groups or line up. According to the mineral composition, two types of melt inclusions can be distinguished: carbonate and silicate-carbonate. In the first type, Ca-Na-Mg- (Sr?) - REE carbonates are dominant among daughter phases. In the second one, silicate phases (phlogopite, monticellite, diopside), Ca-Na-Mg carbonates and magnetite are found together. Melt inclusions in olivine from olivinites are isometric or elongated, 5–25 μm in size. They form groups or occur as isolated inclusions. Benstoneite, geylussit, ankerite, calcite and hydroxyl-bastnesite along with phyllosilicates (phlogopite, paragonite?) were identified among daughter minerals.</p><p>The rare earth elements composition of melt inclusions from both types of rocks is characterized by the predominance of light REE. The content of REE, especially light ones, in inclusions from phoscorites is higher. Strontium and barium contents in most melt inclusions have negative correlations with niobium and zirconium concentrations.</p><p>Melt inclusions from phoscorites and olivinites contain carbonate and silicate mineral phases in various proportions, which may imply heterogeneous trapping of crystalline phases and two immiscible melts, silicate and carbonatite. Inclusions from phoscorite represent a more evolved magma with higher concentrations of rare metals.</p><p>This work was supported by the Russian Science Foundation, grant No 19-17-00013.</p>


2021 ◽  
Author(s):  
Bruna B. Carvalho ◽  
Omar Bartoli ◽  
Madhusoodhan Satish-Kumar ◽  
Tetsuo Kawakami ◽  
Tomokazu Hokada ◽  
...  

<p>Metamorphism at ultra-high temperature (UHT) conditions (i.e., T >900°C and pressures from 7 to 13 kbar) is now recognized as a fundamental process of Earth’s crust, and although progress has been achieved on its understanding, constraining melt generation and fluid regime at such extreme conditions is still poorly explored.</p><p>In this study we use former melt inclusions found in peritectic garnet to investigate anatexis and fluid regime of metapelitic granulites in samples from the Rundvågshetta area, the thermal axis of the Lützow-Holm Complex (East Antarctica). Peak P-T estimates are 925-1039°C at 11.5-15 kbar. The studied rock is a coarse-grained heterogeneous metapelitic granulite with a predominant mafic residual domain and a relatively more felsic, melt-rich domain. The mineral association in the mafic domain typically contains orthopyroxene (Al<sub>2</sub>O<sub>3</sub>6-8.1 wt.%) + sillimanite + quartz + garnet (Prp<sub>42-55</sub>Alm<sub>40-52</sub>Grs<sub>3-4</sub>Sps<sub>0.2-1</sub>; X<sub>Mg</sub>0.5) + K-feldspar (Kfs) + cordierite (X<sub>Mg</sub>0.86) + rutile ± sapphirine ±biotite (X<sub>Mg</sub>0.75; TiO<sub>2</sub>3.7-5.8 wt.%) ±plagioclase (An<sub>35-46</sub>). Interstitial Kfs and quartz with low dihedral angles are often present, in particular as thin films between sillimanite and quartz; these features are interpreted as evidence for the presence of former melt along the grain boundaries. In contrast, the more felsic, melt-rich domain is composed of mesoperthite + quartz + garnet + sillimanite + brown biotite (X<sub>Mg</sub>0.7; TiO<sub>2</sub>3.7-5.4 wt.%) + rutile, but is free of orthopyroxene. Cores of garnet porphyroblasts (0.2-0.8 cm, Prp<sub>54-57</sub>Alm<sub>39-42</sub>Grs<sub>3-4</sub>Sps<sub>0.2-0.6</sub>, X<sub>Mg</sub>0.57) in the melt-rich domains contain clusters of primary glassy inclusions (GI) and crystallized melt inclusions (nanogranitoids; NI) together with multiphase fluid inclusions (MFI) and accessory phases (mainly rutile and apatite).</p><p>The GI (5-20 µm) have negative crystal shapes and contain shrinkage bubbles with or without CO<sub>2</sub>and N<sub>2</sub>. In some cases, GI may have trapped apatite and rutile. Micro-Raman investigation suggest that the H<sub>2</sub>O contents of these glasses range from 0 to 3.4 wt.%. Glasses are weakly peraluminous (ASI=1-1.1), have high SiO<sub>2</sub>(76-78 wt.%), very high K<sub>2</sub>O (6.5-10 wt.%) and extremely low CaO and FeO+MgO contents.</p><p>The NI have variable sizes (10-150 µm) and often contains intergrowth of plagioclase + quartz, K-feldspar (Kfs) and biotite (Bt). Less frequently NI may have euhedral to subhedral grains of Kfs and Bt. Trapped phases are apatite and rutile, except for one inclusion that contains the sapphirine + quartz pair indicating that melt inclusions were trapped at UHT conditions.</p><p>The MFI are composed of CO<sub>2</sub>(with densities from 0.23 to 0.93 g/cm<sup>3</sup>) and step-daughter magnesite, pyrophyllite. Methane, N<sub>2</sub>or H<sub>2</sub>O were not detected.</p><p>Our results show that anatexis of metapelites at extremely hot conditions occurred in the presence of COHfluids and generated highly silicic, weakly peraluminous, mildly to strongly potassic magmas with low H<sub>2</sub>O contents. Additional trace element data will be acquired to shed light on further geochemical fingerprints of these peculiar magmas.</p>


1998 ◽  
Vol 17 ◽  
Author(s):  
C. F. Uhlir ◽  
K. Hasenberger ◽  
E. C. Kirchner

The red and violet gahnites occur within dolomite marbles of medium grade amphibolite facies in the Ganesh Himal area, central Nepal. The dolomites are part of the Higher Midland Formation and lie at the northern limb's eastern end of the Kunchha-Gorkha anticline within the MCT zone of Le Fort (1975). Both gahnites (ZnAl2O4) show a chemical zonation with various contents of Cr, Mg and Fe. The red colour is most probably caused by chromium. The inclusions containing fluids have ideal negative crystal shapes or are irregular. Beside them, various solid inclusions are also found. The fluids of the two- or three-phase inclusions contain H2O and CO2 Two generations of inclusions varying in the content of CO2 indicate a trapping at different PT condition or a water loss of the high CO2 inclusions during some tectonic event.


2012 ◽  
Vol 26 (05) ◽  
pp. 1250031 ◽  
Author(s):  
ERHAN ALBAYRAK

The spin-1 Blume–Capel model is studied on a Bethe lattice which is divided into two sublattices A and B. Alternatingly changing bilinear exchange interactions, JAB and JBA, between the sublattices, i.e., between the nearest-neighbor shell spins, are assumed. The phase diagrams of the model are studied on the (JAB, T) planes for given values of JBA, crystal fields D and the coordination numbers q = 3, 4 and 6. It was found that the model either displays only second-order phase transition lines at higher crystal field values or second- and first-order phase transitions lines combined at tricritical points at lower negative crystal fields. It was also found that the tricritical points move to higher temperatures and to higher values of JAB as the crystal field becomes more negative.


2020 ◽  
Vol 81 (3) ◽  
pp. 84-86
Author(s):  
Lyubomira Macheva

Micro-inclusions in garnet porphyroblasts from high-grade Ograzhden metapelites, SW Bulgaria, have been studied by SEM and micro-Raman Spectroscopy. Micro-inclusions are presented by single grains with facetted outlines parallel to rational crystallographic orientations of the host garnet or by multiphase aggregates with negative crystal shape. Many of studied micro-inclusions can be formed by the presence of melt. The morphology of some of them suggests formation under high pressure metamorphism.


2021 ◽  
Vol 43 (4) ◽  
pp. 87-97
Author(s):  
D.K. VOZNYAK ◽  
V.M. BELSKYI

Various aspects of the genesis of primary fluid inclusions (0.01-1.0 sometimes up to 2 mm) with a large number of mineral inclusions in topaz crystals from chamber pegmatites of Volyn were analyzed. The data could be interpreted in two fundamentally different ways. The first argues for crystals grown in a magmatic melt; the second for an aqueous solution, with a density close to critical. The essence of the discrepancy is the reliability of the identification of the nature of mineral phases in the primary inclusions, if they are crystals captured during growth (xenogenic) or daughter crystals from the fluid. The xenogenic origin of the phases is indicated by the following observations: 1) The location of the mineral inclusions on the growing faces of the topaz crystals depends on the orientation of the crystal’s axis [001] relative to the horizontal plane. It determines the faces on which small mineral phases could be deposited from an aqueous suspension during the growth of topaz crystals. The studied crystals are dominated by individuals in which the mineral inclusions are located on the growing faces {011}, {021}, (001) (and others) of the crystal head. During growth, they were approximately in an upright position. 2) The filling of primary fluid inclusions is not constant. The volume of mineral phases in the inclusions varies from 40 to 95%, often 70-75%, the rest of the volume is gas and aqueous solution. Liquid-gas (liquids ˂ 40%) inclusions without or with < 5% solid phases are very rare. In addition, the ratio between the volumes of different mineral phases in the inclusions is not constant. 3) Light rims (Becke lines) around the inclusions record a change in the refractive indices (caused by a different chemical composition) of topaz when inclusions are acquiring the equilibrium form of the negative crystal. 4) The xenogenic nature of the mineral phases of the primary fluid inclusions in topaz is indirectly confirmed by the value of the fluid pressure (260-300 MPa)of the magmatic melt (determined by the method of homogenization of these inclusions), as it denies the possibility of chamber pegmatite formation at depths of 9-11 km. Thus, the peculiar mineral inclusions were deposited on the face of growing topaz crystals of small mineral phases from a turbid aqueous suspension, which boiled violently. We conclude that topaz crystals in chamber pegmatites of Volyn grew in aqueous solution at a temperature of 380-415ºС and a pressure of 30-40 MPa.


Sign in / Sign up

Export Citation Format

Share Document