Thermal Effects in Viscoelasticity due to Thermo-Mechanical Coupling

Author(s):  
E. C. Ting ◽  
H. L. Yuan ◽  
H. C. Wang
Author(s):  
Florence Nyssen ◽  
Alain Batailly

In modern turbomachine designs, the nominal clearances between rotating bladed-disks and their surrounding casing are reduced to improve aerodynamic performances of the engine. This clearance reduction increases the risk of contacts between components and may lead to hazardous interaction phenomena. A common technical solution to mitigate such interactions consists in the deposition of an abradable coating along the casing inner surface. This enhances the engine efficiency while ensuring operational safety. However, contact interactions between blade tips and an abradable layer may yield unexpected wear removal phenomena. The aim of this work is to investigate the numerical modeling of thermal effects within the abradable layer during contact interactions and compare it with experimental data. A dedicated thermal finite element mesh is employed. At each time-step, a weak thermo-mechanical coupling is assumed: thermal effects affect the mechanics of the system, but the mechanical deformation of the elements has no effect on temperatures. Weak coupling is well appropriated in the case of rapid dynamics using small time-step and explicit resolution schemes. Moreover, only heat transfer by conduction is considered in this work. To reduce computational times, a coarser spatial discretization is used for the thermal mesh comparing to the mechanical one. The time-step used to compute the temperature evolution is larger than the one used for the mechanical iterations since the time constant of thermal effect is larger than contact events. The proposed numerical modeling strategy is applied on an industrial blade to analyze the impact of thermal effects on the blade's dynamics.


Author(s):  
Florence Nyssen ◽  
Alain Batailly

In modern turbomachine designs, the nominal clearances between rotating bladed-disks and their surrounding casing are reduced to improve aerodynamic performances of the engine. This clearance reduction increases the risk of contacts between components and may lead to hazardous interaction phenomena. A common technical solution to mitigate such interactions consists in the deposition of an abradable coating along the casing inner surface. This enhances the engine efficiency while ensuring operational safety. However, contact interactions between blade-tips and an abradable layer may yield unexpected wear removal phenomena. The aim of this work is to investigate the numerical modeling of thermal effects within the abradable layer during contact interactions and compare it with experimental data. A dedicated thermal finite element mesh is employed. At each time step, a weak thermo-mechanical coupling is assumed: thermal effects affect the mechanics of the system, but the mechanical deformation of the elements has no effect on temperatures. Weak coupling is well appropriated in the case of rapid dynamics using small time step and explicit resolution schemes. Moreover, only heat transfer by conduction is considered in this work. To reduce computational times, a coarser spatial discretization is used for the thermal mesh comparing to the mechanical one. The time step used to compute the temperature evolution is larger than the one used for the mechanical iterations since the time constant of thermal effect is larger than contact events. The proposed numerical modeling strategy is applied on an industrial blade to analyze the impact of thermal effects on the blade’s dynamics.


Author(s):  
K.C. Newton

Thermal effects in lens regulator systems have become a major problem with the extension of electron microscope resolution capabilities below 5 Angstrom units. Larger columns with immersion lenses and increased accelerating potentials have made solutions more difficult by increasing the power being handled. Environmental control, component choice, and wiring design provide answers, however. Figure 1 indicates with broken lines where thermal problems develop in regulator systemsExtensive environmental control is required in the sampling and reference networks. In each case, stability better than I ppm/min. is required. Components with thermal coefficients satisfactory for these applications without environmental control are either not available or priced prohibitively.


Author(s):  
A. G. Jackson ◽  
M. Rowe

Diffraction intensities from intermetallic compounds are, in the kinematic approximation, proportional to the scattering amplitude from the element doing the scattering. More detailed calculations have shown that site symmetry and occupation by various atom species also affects the intensity in a diffracted beam. [1] Hence, by measuring the intensities of beams, or their ratios, the occupancy can be estimated. Measurement of the intensity values also allows structure calculations to be made to determine the spatial distribution of the potentials doing the scattering. Thermal effects are also present as a background contribution. Inelastic effects such as loss or absorption/excitation complicate the intensity behavior, and dynamical theory is required to estimate the intensity value.The dynamic range of currents in diffracted beams can be 104or 105:1. Hence, detection of such information requires a means for collecting the intensity over a signal-to-noise range beyond that obtainable with a single film plate, which has a S/N of about 103:1. Although such a collection system is not available currently, a simple system consisting of instrumentation on an existing STEM can be used as a proof of concept which has a S/N of about 255:1, limited by the 8 bit pixel attributes used in the electronics. Use of 24 bit pixel attributes would easily allowthe desired noise range to be attained in the processing instrumentation. The S/N of the scintillator used by the photoelectron sensor is about 106 to 1, well beyond the S/N goal. The trade-off that must be made is the time for acquiring the signal, since the pattern can be obtained in seconds using film plates, compared to 10 to 20 minutes for a pattern to be acquired using the digital scan. Parallel acquisition would, of course, speed up this process immensely.


ICCTP 2009 ◽  
2009 ◽  
Author(s):  
J. Zhou ◽  
F. Sun ◽  
X. Hu ◽  
X. Cheng

2019 ◽  
Vol 13 (3) ◽  
pp. 5334-5346
Author(s):  
M. N. Nguyen ◽  
L. Q. Nguyen ◽  
H. M. Chu ◽  
H. N. Vu

In this paper, we report on a SOI-based comb capacitive-type accelerometer that senses acceleration in two lateral directions. The structure of the accelerometer was designed using a proof mass connected by four folded-beam springs, which are compliant to inertial displacement causing by attached acceleration in the two lateral directions. At the same time, the folded-beam springs enabled to suppress cross-talk causing by mechanical coupling from parasitic vibration modes. The differential capacitor sense structure was employed to eliminate common mode effects. The design of gap between comb fingers was also analyzed to find an optimally sensing comb electrode structure. The design of the accelerometer was carried out using the finite element analysis. The fabrication of the device was based on SOI-micromachining. The characteristics of the accelerometer have been investigated by a fully differential capacitive bridge interface using a sub-fF switched-capacitor integrator circuit. The sensitivities of the accelerometer in the two lateral directions were determined to be 6 and 5.5 fF/g, respectively. The cross-axis sensitivities of the accelerometer were less than 5%, which shows that the accelerometer can be used for measuring precisely acceleration in the two lateral directions. The accelerometer operates linearly in the range of investigated acceleration from 0 to 4g. The proposed accelerometer is expected for low-g applications.


2001 ◽  
Vol 32 (4-6) ◽  
pp. 5
Author(s):  
A. A. Dolinsky ◽  
Yu. A. Shurchkova ◽  
B. I. Basok ◽  
T. S. Ryzhkova

Sign in / Sign up

Export Citation Format

Share Document