The Use of Nonlinear Solitary Waves for Computing Short Wave Equation Pulses

Author(s):  
John Steinhoff ◽  
Meng Fan ◽  
Lesong Wang ◽  
Min Xiao
Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 878
Author(s):  
Alexei Cheviakov ◽  
Denys Dutykh ◽  
Aidar Assylbekuly

We investigate a family of higher-order Benjamin–Bona–Mahony-type equations, which appeared in the course of study towards finding a Galilei-invariant, energy-preserving long wave equation. We perform local symmetry and conservation laws classification for this family of Partial Differential Equations (PDEs). The analysis reveals that this family includes a special equation which admits additional, higher-order local symmetries and conservation laws. We compute its solitary waves and simulate their collisions. The numerical simulations show that their collision is elastic, which is an indication of its S−integrability. This particular PDE turns out to be a rescaled version of the celebrated Camassa–Holm equation, which confirms its integrability.


Author(s):  
Ghodrat Ebadi ◽  
Aida Mojaver ◽  
Sachin Kumar ◽  
Anjan Biswas

Purpose – The purpose of this paper is to discuss the integrability studies to the long-short wave equation that is studied in the context of shallow water waves. There are several integration tools that are applied to obtain the soliton and other solutions to the equation. The integration techniques are traveling waves, exp-function method, G′/G-expansion method and several others. Design/methodology/approach – The design of the paper is structured with an introduction to the model. First the traveling wave hypothesis approach leads to the waves of permanent form. This eventually leads to the formulation of other approaches that conforms to the expected results. Findings – The findings are a spectrum of solutions that lead to the clearer understanding of the physical phenomena of long-short waves. There are several constraint conditions that fall out naturally from the solutions. These poses the restrictions for the existence of the soliton solutions. Originality/value – The results are new and are sharp with Lie symmetry analysis and other advanced integration techniques in place. These lead to the connection between these integration approaches.


2003 ◽  
Vol 58 (5-6) ◽  
pp. 280-284
Author(s):  
J.-F. Zhang ◽  
Z.-M. Lu ◽  
Y.-L. Liu

By means of the Bäcklund transformation, a quite general variable separation solution of the (2+1)- dimensional long dispersive wave equation: λqt + qxx − 2q ∫ (qr)xdy = 0, λrt − rxx + 2r ∫ (qr)xdy= 0, is derived. In addition to some types of the usual localized structures such as dromion, lumps, ring soliton and oscillated dromion, breathers soliton, fractal-dromion, peakon, compacton, fractal and chaotic soliton structures can be constructed by selecting the arbitrary single valued functions appropriately, a new class of localized coherent structures, that is the folded solitary waves and foldons, in this system are found by selecting appropriate multi-valuded functions. These structures exhibit interesting novel features not found in one-dimensions. - PACS: 03.40.Kf., 02.30.Jr, 03.65.Ge.


2016 ◽  
Vol 810 ◽  
pp. 5-24 ◽  
Author(s):  
M. Hirata ◽  
S. Okino ◽  
H. Hanazaki

Capillary–gravity waves resonantly excited by an obstacle (Froude number: $Fr=1$) are investigated by the numerical solution of the Euler equations. The radiation of short waves from the long nonlinear waves is observed when the capillary effects are weak (Bond number: $Bo<1/3$). The upstream-advancing solitary wave radiates a short linear wave whose phase velocity is equal to the solitary waves and group velocity is faster than the solitary wave (soliton radiation). Therefore, the short wave is observed upstream of the foremost solitary wave. The downstream cnoidal wave also radiates a short wave which propagates upstream in the depression region between the obstacle and the cnoidal wave. The short wave interacts with the long wave above the obstacle, and generates a second short wave which propagates downstream. These generation processes will be repeated, and the number of wavenumber components in the depression region increases with time to generate a complicated wave pattern. The upstream soliton radiation can be predicted qualitatively by the fifth-order forced Korteweg–de Vries equation, but the equation overestimates the wavelength since it is based on a long-wave approximation. At a large Bond number of $Bo=2/3$, the wave pattern has the rotation symmetry against the pattern at $Bo=0$, and the depression solitary waves propagate downstream.


2011 ◽  
Vol 21 (1) ◽  
pp. 012002 ◽  
Author(s):  
Jinkyu Yang ◽  
Claudio Silvestro ◽  
Sophia N Sangiorgio ◽  
Sean L Borkowski ◽  
Edward Ebramzadeh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document