Computer Algebra Investigation of Equivalence in 4-node Plane Stress/Strain Finite Elements

Author(s):  
Anders Eriksson ◽  
Yunhua Luo ◽  
Costin Pacoste
2011 ◽  
Vol 276 ◽  
pp. 145-155
Author(s):  
Benoit Olbrechts ◽  
Bertrand Rue ◽  
Thomas Pardoen ◽  
Denis Flandre ◽  
Jean Pierre Raskin

In this paper, novel pressure sensors approach is proposed and described. Active devices and oscillating circuits are directly integrated on very thin dielectric membranes as pressure transducers. Involved patterning of the membrane is supposed to cause a drop of mechanical robustness. Finite elements simulations are performed in order to better understand stress/strain distribution and as an attempt to explain the early burst of patterned membranes. Smart circuit designs are reported as solutions with high sensitivity and reduced footprint on membranes.


Author(s):  
Andrius Grigusevičius ◽  
Gediminas Blaževičius

This paper focuses on the creation and numerical application of physically nonlinear plane steel frames analysis problems. The frames are analysed using finite elements with axial and bending deformations taken into account. Two nonlinear physical models are used and compared – linear hardening and ideal elastic-plastic. In the first model, distributions of plastic deformations along the elements and across the sections are taken into account. The proposed method allows for an exact determination of the stress-strain state of a rectangular section subjected to an arbitrary combination of bending moment and axial force. Development of plastic deformations in time and distribution along the length of elements are determined by dividing the structure (and loading) into the parts (increments) and determining the reduced modulus of elasticity for every part. The plastic hinge concept is used for the analysis based on the ideal elastic-plastic model. The created calculation algorithms have been fully implemented in a computer program. The numerical results of the two problems are presented in detail. Besides the stress-strain analysis, the described examples demonstrate how the accuracy of the results depends on the number of finite elements, on the number of load increments and on the physical material model. COMSOL finite element analysis software was used to compare the presented 1D FEM methodology to the 3D FEM mesh model analysis.


1976 ◽  
Vol 98 (4) ◽  
pp. 289-295 ◽  
Author(s):  
C. F. Shih ◽  
J. W. Hutchinson

Fully plastic plane stress solutions are given for a center-cracked strip in tension and an edge-cracked strip in pure bending. In the fully plastic formulation the material is characterized by a pure power hardening stress-strain relation which reduces at one limit to linear elasticity and at the other to rigid/perfect plasticity. Simple formulas are given for estimating the J-integral, the load-point displacement and the crack opening displacement in terms of the applied load for strain hardening materials characterized by the Ramberg-Osgood stress-strain relation in tension. The formulas make use of the linear elastic solution and the fully plastic solution to interpolate over the entire range of small and large scale yielding. The accuracy of the formulas is assessed using finite element calculations for some specific configurations.


2020 ◽  
pp. 107-115
Author(s):  
Yu.Yu. Pidhoretskyi ◽  

In the article, the author presents results of mathematical modeling of operation of the venting relief structures made of honeycomb polycarbonate sheets and fixed in the standard window profiles, under the effect of explosion. In order to reproduce the explosion effect on venting relief structures, an approach to modeling dynamic systems was applied, which used a finite element method to approximate the basic general equations of dynamics added by the equations of the stress-strain state of a solid body. The applied approach differs by reproduction of the explosion process impact on the venting relief structures of this type by using equations which describe the motion of the dynamic system with accounting a contact interaction with the friction of honeycomb polycarbonate sheets and corresponding surfaces of the standard window profile locks. The honeycomb structure of the polycarbonate sheet was modeled by appropriate finite elements with considering the polycarbonate elastic properties. In order to implement numerical algorithms of this approach, a program code of the LS-DYNA computer system was used. The conducted numerical experiment on reproducing the explosion effect on the relief elements of this type of the venting relief structures made it possible to trace all stages of the honeycomb polycarbonate sheets deforming and moving under the action of explosion up to the exit of their edges from the window profile locks with the study of the corresponding stress-strain state parameters. By using this approach, reliably disclosure of the venting relief structures based on honeycomb polycarbonate sheets was investigated, and conditions for their reliable disclosure were identified with considering geometrical parameters of such type of venting relief structures opening and thickness of the honeycomb polycarbonate sheets. Results of the research have shown that reliable disclosure of the honeycomb polycarbonate sheets occurs within the range of the explosion overpressure, hence, confirming the effectiveness of such type of the venting relief structures used for protecting buildings against the explosion action.


1966 ◽  
Vol 17 (1) ◽  
pp. 83-104 ◽  
Author(s):  
G. G. Pope

SummaryA procedure is developed for the analysis of plane stress problems when yielding occurs locally. The region is divided into triangular elements and the deformation is analysed on a step-by-step basis, using the matrix notation developed by Argyris. The simple expressions which are derived for the element properties are applicable with any stress-strain relations which are stable and time-independent. Simple numerical examples are given.


Author(s):  
D. O. BANNIKOV ◽  
V. P. KUPRII ◽  
D. YU. VOTCHENKO

Purpose. Perform numerical analysis of the station structure. Take into account in the process of mathematical modeling the process of construction of station tunnels of a three-vaulted station. Obtain the regularities of the stress-strain state of the linings, which is influenced by the processes of soil excavation and lining construction. Methodology. To achieve this goal, a series of numerical calculations of models of the deep contour interval metro pylon station was performed. Three finite-element models have been developed, which reflect the stages of construction of a three-vaulted pylon station. Numerical analysis was performed on the basis of the finite element method, implemented in the calculation complex Lira for Windows. Modeling of the stress-strain state of the station tunnel linings and the soil massif was performed using rectangular, universal quadrangular and triangular finite elements, which take into account the special properties of the soil massif. Station tunnel linings are modeled by means of rod finite elements. Findings. Isofields of the stress-strain state in finite-element models reflecting the stages of construction are obtained. The vertical displacements and horizontal stresses that are characteristic of a three-vaulted pylon station are analyzed. The analysis of horizontal stresses proved that at the stage of opening of the middle tunnel the scheme of pylon operation is rather disadvantageous. The analysis of bending moments and normal forces was also carried out and the asymmetry of their distribution was noted. Originality. Based on the obtained patterns of distribution of stress-strain state and force factors, it is proved that numerical analysis of the station structure during construction is necessary to take measures to prevent or reduce deformation of frames that are in unfavorable conditions. Practical value. In the course of research, the regularities of changes in stresses, displacements, bending moments and normal forces in the models of the pylon station, which reflect the sequence of its construction, were obtained.


1971 ◽  
Vol 97 (5) ◽  
pp. 1560-1566
Author(s):  
Raffaele Casciaro ◽  
Antonio Di Carlo ◽  
Gianfranco Valente

Sign in / Sign up

Export Citation Format

Share Document