scholarly journals A Distributed Plasticity Approach for Steel Frames Analysis Including Strain Hardening Effects

Author(s):  
Andrius Grigusevičius ◽  
Gediminas Blaževičius

This paper focuses on the creation and numerical application of physically nonlinear plane steel frames analysis problems. The frames are analysed using finite elements with axial and bending deformations taken into account. Two nonlinear physical models are used and compared – linear hardening and ideal elastic-plastic. In the first model, distributions of plastic deformations along the elements and across the sections are taken into account. The proposed method allows for an exact determination of the stress-strain state of a rectangular section subjected to an arbitrary combination of bending moment and axial force. Development of plastic deformations in time and distribution along the length of elements are determined by dividing the structure (and loading) into the parts (increments) and determining the reduced modulus of elasticity for every part. The plastic hinge concept is used for the analysis based on the ideal elastic-plastic model. The created calculation algorithms have been fully implemented in a computer program. The numerical results of the two problems are presented in detail. Besides the stress-strain analysis, the described examples demonstrate how the accuracy of the results depends on the number of finite elements, on the number of load increments and on the physical material model. COMSOL finite element analysis software was used to compare the presented 1D FEM methodology to the 3D FEM mesh model analysis.

2010 ◽  
Vol 168-170 ◽  
pp. 553-558
Author(s):  
Feng Xia Li ◽  
Bu Xin

Most steel beam-column connections actually show semi-rigid deformation behavior that can contribute substantially to overall displacements of the structure and to the distribution of member forces. Steel frame structure with semi-rigid connections are becoming more and more popular due to their many advantages such as the better satisfaction with the flexible architectural design, low inclusive cost and environmental protect as well. So it is very necessary that studying the behavior of those steel frame under cyclic reversal loading. On the basics of connections experiments the experiment research on the lateral resistance system of steel frame structure has been completed. Two one-second scale, one-bay, two-story steel frames with semi-rigid connections under cyclic reversal loading. The seismic behavior of the steel frames with semi-rigid connections, including the failure pattern, occurrence order of plastic hinge, hysteretic property and energy dissipation, etc, was investigated in this paper. Some conclusions were obtained that by employing top-mounted and two web angles connections, the higher distortion occurred in the frames, and the internal force distributing of beams and columns was changed, and the ductility and the absorbs seismic energy capability of steel frames can be improved effectively.


Author(s):  
Moustafa El-Gindy ◽  
Ryan Lescoe ◽  
Fredrik O¨ijer ◽  
Inge Johansson ◽  
Mukesh Trivedi

In recent years, the advancement of computerized modeling has allowed for the creation of extensive pneumatic tire models. These models have been used to determine many tire properties and tire-road interaction parameters which are either prohibitively expensive or unavailable with physical models. More recently, computerized modeling has been used to explore tire-soil interactions. The new parameters created by these interactions were defined for these models, but accurate soil constitutive equations were lacking. With the previous models, the soil was simulated using Finite Element Analysis (FEA). However, the meshless modeling method of Smooth Particle Hydrodynamics (SPH) may be a viable approach to more accurately simulating large soil deformations and complex tire-soil interactions. With both the FEA and SPH soils modeled as elastic-plastic solids, simplified soil tests are conducted. First, pressure-sinkage tests are used to explore the differences in the two soil-modeling methods. From these tests, it is found that the FEA model supports a surface pressure via the tensile forces created by the stretching of the surface elements. Conversely, for the SPH model, the surface pressure is supported via the compressive forces created by the compacting of particles. Next, shear-displacement tests are conducted with the SPH soil (as this test cannot easily be performed with an FEA soil model). These shear tests show that the SPH soil behaves more like clay in initial shearing and more like sand by exhibiting increased shearing due to vertical loading. While both the pressure-sinkage and shear-displacement tests still show that a larger particle density is unnecessary for SPH soil modeling, the shear-displacement tests indicate that an elastic-plastic material model may not be the best choice.


1997 ◽  
Vol 119 (4) ◽  
pp. 281-287 ◽  
Author(s):  
J. W. Tierney ◽  
J. W. Eischen

The residual stress distribution in bimaterial beams induced by multiple thermal loadings has been investigated. Three models for the nonlinear stress-strain material behavior were considered: bilinear elastic-plastic, power law elastic-plastic, and power law purely plastic. The equations governing equilibrium, compatibility of strain, and stress-strain for the bimaterial configuration make up a system of nonlinear algebraic equations which is solved numerically. The elastic-plastic power law model leads to stress discontinuity in the layers. The other two models have been verified with a finite element analysis. Several examples are included using materials common to the microelectronics industry.


2021 ◽  
Vol 11 (24) ◽  
pp. 11656
Author(s):  
Lukas Masendorf ◽  
Ralf Burghardt ◽  
Michael Wächter ◽  
Alfons Esderts

For the service life estimation of metallic components under cyclic loading according to strain-based approaches, a simulation of the elastic-plastic stress–strain path at the point of interest is necessary. An efficient method for determining this stress–strain path is the use of the load–notch-strain curve, as this is also implemented within the FKM guideline nonlinear. The load–notch-strain curve describes the relationship between the load on the component and the local elastic-plastic strain. On the one hand, this can be estimated from loads or theoretical elastic stresses by using notch root approximations. On the other hand, this can be determined in a finite element analysis based on the elastic-plastic material behaviour. This contribution describes how this latter option is carried out in general and how it can be optimised in such a way that the FEA requires significantly less calculation time. To show the benefit of this optimisation, a comparative calculation on an exemplary geometry is carried out.


2012 ◽  
Vol 625 ◽  
pp. 312-317 ◽  
Author(s):  
Guang Feng Shi ◽  
Guo Quan Shi ◽  
Lin Sen Song ◽  
Zhi Wei Xu

For the research on elastic-plastic deformation characteristics of the echelle grating in the mechanical ruling depth range, a series of nanoindentation tests are completed about the deposited Al film of available echelle grating with a Berkovich indenter on a CSM nanoindentation instrument. Then a finite element analysis of the nanoindentation process is studied with an orthogonal experiment method for a series of given parameters containing the yield stress and strain-hardening exponent. The optimum combinations of yield stress and strain-hardening exponent are 200MPa and 0.1, which are got by the objective of the least absolute value of maximum loads deviation between the indentation test and the finite element analysis. Finally the elastic-plastic stress-strain curve of power function of the Al film is represented with the difference analysis from the orthogonal simulations.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
R. Adibi-Asl ◽  
R. Seshadri

Notch stress-strain conversion (NSSC) rules are widely used to estimate nonlinear and history-dependent stress-strain behavior of the notch components or structures. This paper focuses on the estimation of stress and strain using the conventional NSSC rules and linear elastic analysis by considering the entire relaxation locus of the component during inelastic action. On the basis of local effects, net-section collapse, and reference stress, a simple method for estimating inelastic strain in the vicinity of stress concentrations is proposed. The accuracy of the method is compared with elastic-plastic finite element analysis for several notch configurations exhibiting two-dimensional and three-dimensional effects.


Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


2011 ◽  
Vol 39 (4) ◽  
pp. 223-244 ◽  
Author(s):  
Y. Nakajima

Abstract The tire technology related with the computational mechanics is reviewed from the standpoint of yesterday, today, and tomorrow. Yesterday: A finite element method was developed in the 1950s as a tool of computational mechanics. In the tire manufacturers, finite element analysis (FEA) was started applying to a tire analysis in the beginning of 1970s and this was much earlier than the vehicle industry, electric industry, and others. The main reason was that construction and configurations of a tire were so complicated that analytical approach could not solve many problems related with tire mechanics. Since commercial software was not so popular in 1970s, in-house axisymmetric codes were developed for three kinds of application such as stress/strain, heat conduction, and modal analysis. Since FEA could make the stress/strain visible in a tire, the application area was mainly tire durability. Today: combining FEA with optimization techniques, the tire design procedure is drastically changed in side wall shape, tire crown shape, pitch variation, tire pattern, etc. So the computational mechanics becomes an indispensable tool for tire industry. Furthermore, an insight to improve tire performance is obtained from the optimized solution and the new technologies were created from the insight. Then, FEA is applied to various areas such as hydroplaning and snow traction based on the formulation of fluid–tire interaction. Since the computational mechanics enables us to see what we could not see, new tire patterns were developed by seeing the streamline in tire contact area and shear stress in snow in traction.Tomorrow: The computational mechanics will be applied in multidisciplinary areas and nano-scale areas to create new technologies. The environmental subjects will be more important such as rolling resistance, noise and wear.


Sign in / Sign up

Export Citation Format

Share Document