Regulation of Phosphatidylcholine Synthesis in Type II Alveolar Epithelial Cells

1988 ◽  
pp. 357-361
Author(s):  
R. Burkhardt ◽  
P. von Wichert ◽  
J. J. Batenburg ◽  
L. M. G. van Golde
Pneumologie ◽  
2014 ◽  
Vol 68 (06) ◽  
Author(s):  
S Seehase ◽  
B Baron-Luehr ◽  
C Kugler ◽  
E Vollmer ◽  
T Goldmann

2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098604
Author(s):  
Dong Yuan ◽  
Yuanshun Liu ◽  
Mengyu Li ◽  
Hongbin Zhou ◽  
Liming Cao ◽  
...  

Objective The primary aim of our study was to explore the mechanisms through which long non-coding RNA (lncRNA)-mediated sirtuin-1 (SIRT1) signaling regulates type II alveolar epithelial cell (AECII) senescence induced by a cigarette smoke-media suspension (CSM). Methods Pharmacological SIRT1 activation was induced using SRT2104 and senescence-associated lncRNA 1 (SAL-RNA1) was overexpressed. The expression of SIRT1, FOXO3a, p53, p21, MMP-9, and TIMP-1 in different groups was detected by qRT-PCR and Western blotting; the activity of SA-β gal was detected by staining; the binding of SIRT1 to FOXO3a and p53 gene transcription promoters was detected by Chip. Results We found that CSM increased AECII senescence, while SAL-RNA1 overexpression and SIRT1 activation significantly decreased levels of AECII senescence induced by CSM. Using chromatin immunoprecipitation, we found that SIRT1 bound differentially to transcriptional complexes on the FOXO3a and p53 promoters. Conclusion Our results suggested that lncRNA-SAL1-mediated SIRT1 signaling reduces senescence of AECIIs induced by CSM. These findings suggest a new therapeutic target to limit the irreversible apoptosis of lung epithelial cells in COPD patients.


2005 ◽  
Vol 6 (1) ◽  
Author(s):  
Dmitri V Pechkovsky ◽  
Torsten Goldmann ◽  
Corinna Ludwig ◽  
Antje Prasse ◽  
Ekkehard Vollmer ◽  
...  

1982 ◽  
Vol 243 (1) ◽  
pp. C96-C100 ◽  
Author(s):  
B. E. Goodman ◽  
E. D. Crandall

We have observed the formation of domes by type II alveolar epithelial cells harvested from rat lungs. The cells were harvested using elastase and grew to confluence in 3-4 days after plating on plastic. Numerous domes were observed in the monolayers 4-18 days after plating, with peak dome density occurring at days 6-9. When trypsin was used instead of elastase as the harvesting enzyme, many fewer domes were formed by the monolayers, with peak dome density observed at day 5 and no domes seen after 8 days. The life span of an individual dome was about 3-4 h. The presence of domes indicates an intact active transport function of the cells in the monolayer, which may represent an important mechanism for the maintenance of fluid-free air spaces and normal alveolar fluid balance in mammalian lungs in vivo.


2004 ◽  
Vol 287 (1) ◽  
pp. L104-L110 ◽  
Author(s):  
Xiaohui Fang ◽  
Yuanlin Song ◽  
Rachel Zemans ◽  
Jan Hirsch ◽  
Michael A. Matthay

Previous studies have used fluid-instilled lungs to measure net alveolar fluid transport in intact animal and human lungs. However, intact lung studies have two limitations: the contribution of different distal lung epithelial cells cannot be studied separately, and the surface area for fluid absorption can only be approximated. Therefore, we developed a method to measure net vectorial fluid transport in cultured rat alveolar type II cells using an air-liquid interface. The cells were seeded on 0.4-μm microporous inserts in a Transwell system. At 96 h, the transmembrane electrical resistance reached a peak level (1,530 ± 115 Ω·cm2) with morphological evidence of tight junctions. We measured net fluid transport by placing 150 μl of culture medium containing 0.5 μCi of 131I-albumin on the apical side of the polarized cells. Protein permeability across the cell monolayer, as measured by labeled albumin, was 1.17 ± 0.34% over 24 h. The change in concentration of 131I-albumin in the apical fluid was used to determine the net fluid transported across the monolayer over 12 and 24 h. The net basal fluid transport was 0.84 μl·cm−2·h−1. cAMP stimulation with forskolin and IBMX increased fluid transport by 96%. Amiloride inhibited both the basal and stimulated fluid transport. Ouabain inhibited basal fluid transport by 93%. The cultured cells retained alveolar type II-like features based on morphologic studies, including ultrastructural imaging. In conclusion, this novel in vitro system can be used to measure net vectorial fluid transport across cultured, polarized alveolar epithelial cells.


1995 ◽  
Vol 269 (1) ◽  
pp. L127-L135 ◽  
Author(s):  
W. W. Barton ◽  
S. Wilcoxen ◽  
P. J. Christensen ◽  
R. Paine

Intercellular adhesion molecule-1 (ICAM-1) is expressed at high levels on type I alveolar epithelial cells in the normal lung and is induced in vitro as type II cells spread in primary culture. In contrast, in most nonhematopoetic cells ICAM-1 expression is induced in response to inflammatory cytokines. We have formed the hypothesis that the signals that control ICAM-1 expression in alveolar epithelial cells are fundamentally different from those controlling expression in most other cells. To test this hypothesis, we have investigated the influence of inflammatory cytokines on ICAM-1 expression in isolated type II cells that have spread in culture and compared this response to that of rat pulmonary artery endothelial cells (RPAEC). ICAM-1 protein, determined both by a cell-based enzyme-linked immunosorbent assay and by Western blot analysis, and mRNA were minimally expressed in unstimulated RPAEC but were significantly induced in a time- and dose-dependent manner by treatment with tumor necrosis factor-alpha, interleukin-1 beta, or interferon-gamma. In contrast, these cytokines did not influence the constitutive high level ICAM-1 protein expression in alveolar epithelial cells and only minimally affected steady-state mRNA levels. ICAM-1 mRNA half-life, measured in the presence of actinomycin D, was relatively long at 7 h in alveolar epithelial cells and 4 h in RPAEC. The striking lack of response of ICAM-1 expression by alveolar epithelial cells to inflammatory cytokines is in contrast to virtually all other epithelial cells studied to date and supports the hypothesis that ICAM-1 expression by these cells is a function of cellular differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document