Two-Dimensional Nonlinear Saturation Behaviour of Instability Waves in a Boundary Layer at Mach 5

1995 ◽  
pp. 203-217
Author(s):  
N. A. Adams ◽  
L. Kleiser
1998 ◽  
Vol 355 ◽  
pp. 193-227 ◽  
Author(s):  
VASSILIOS THEOFILIS

The stability of an incompressible swept attachment-line boundary layer flow is studied numerically, within the Görtler–Hämmerlin framework, in both the linear and nonlinear two-dimensional regimes in a self-consistent manner. The initial-boundary-value problem resulting from substitution of small-amplitude excitation into the incompressible Navier–Stokes equations and linearization about the generalized Hiemenz profile is solved. A comprehensive comparison of all linear approaches utilized to date is presented and it is demonstrated that the linear initial-boundary-value problem formulation delivers results in excellent agreement with those obtained by solution of either the temporal or the spatial linear stability theory eigenvalue problem for both zero suction and a layer in which blowing is applied. In the latter boundary layer recent experiments have documented the growth of instability waves with frequencies in a range encompassed by that of the unstable Görtler–Hämmerlin linear modes found in our simulations. In order to enable further comparisons with experiment and, thus, assess the validity of the Görtler–Hämmerlin theoretical model, we make available the spatial structure of the eigenfunctions at maximum growth conditions.The condition on smallness of the imposed excitation is subsequently relaxed and the resulting nonlinear initial-boundary-value problem is solved. Extensive numerical experimentation has been performed which has verified theoretical predictions on the way in which the solution is expected to bifurcate from the linear neutral loop. However, it is demonstrated that the two-dimensional model equations considered do not deliver subcritical instability of this flow; this strengthens the conjecture that three-dimensionality is, at least partly, responsible for the observed discrepancy between the linear theory critical Reynolds number and the subcritical turbulence observed either experimentally or in three-dimensional numerical simulations. Further, the present nonlinear computations demonstrate that the unstable flow has its line of maximum amplification in the neighbourhood of the experimentally observed instability waves, in a manner analogous to the Blasius boundary layer. In line with previous eigenvalue problem and direct simulation work, suction is observed to be a powerful stabilization mechanism for naturally occurring instabilities of small amplitude.


1968 ◽  
Vol 19 (1) ◽  
pp. 1-19 ◽  
Author(s):  
H. McDonald

SummaryRecently two authors, Nash and Goldberg, have suggested, intuitively, that the rate at which the shear stress distribution in an incompressible, two-dimensional, turbulent boundary layer would return to its equilibrium value is directly proportional to the extent of the departure from the equilibrium state. Examination of the behaviour of the integral properties of the boundary layer supports this hypothesis. In the present paper a relationship similar to the suggestion of Nash and Goldberg is derived from the local balance of the kinetic energy of the turbulence. Coupling this simple derived relationship to the boundary layer momentum and moment-of-momentum integral equations results in quite accurate predictions of the behaviour of non-equilibrium turbulent boundary layers in arbitrary adverse (given) pressure distributions.


2001 ◽  
Vol 432 ◽  
pp. 69-90 ◽  
Author(s):  
RUDOLPH A. KING ◽  
KENNETH S. BREUER

An experimental investigation was conducted to examine acoustic receptivity and subsequent boundary-layer instability evolution for a Blasius boundary layer formed on a flat plate in the presence of two-dimensional and oblique (three-dimensional) surface waviness. The effect of the non-localized surface roughness geometry and acoustic wave amplitude on the receptivity process was explored. The surface roughness had a well-defined wavenumber spectrum with fundamental wavenumber kw. A planar downstream-travelling acoustic wave was created to temporally excite the flow near the resonance frequency of an unstable eigenmode corresponding to kts = kw. The range of acoustic forcing levels, ε, and roughness heights, Δh, examined resulted in a linear dependence of receptivity coefficients; however, the larger values of the forcing combination εΔh resulted in subsequent nonlinear development of the Tollmien–Schlichting (T–S) wave. This study provides the first experimental evidence of a marked increase in the receptivity coefficient with increasing obliqueness of the surface waviness in excellent agreement with theory. Detuning of the two-dimensional and oblique disturbances was investigated by varying the streamwise wall-roughness wavenumber αw and measuring the T–S response. For the configuration where laminar-to-turbulent breakdown occurred, the breakdown process was found to be dominated by energy at the fundamental and harmonic frequencies, indicative of K-type breakdown.


1998 ◽  
Vol 371 ◽  
pp. 207-232 ◽  
Author(s):  
G. VITTORI ◽  
R. VERZICCO

Numerical simulations of Navier–Stokes equations are performed to study the flow originated by an oscillating pressure gradient close to a wall characterized by small imperfections. The scenario of transition from the laminar to the turbulent regime is investigated and the results are interpreted in the light of existing analytical theories. The ‘disturbed-laminar’ and the ‘intermittently turbulent’ regimes detected experimentally are reproduced by the present simulations. Moreover it is found that imperfections of the wall are of fundamental importance in causing the growth of two-dimensional disturbances which in turn trigger turbulence in the Stokes boundary layer. Finally, in the intermittently turbulent regime, a description is given of the temporal development of turbulence characteristics.


1972 ◽  
Vol 94 (1) ◽  
pp. 23-28 ◽  
Author(s):  
E. Brundrett ◽  
W. B. Nicoll ◽  
A. B. Strong

The van Driest damped mixing length has been extended to account for the effects of mass transfer through a porous plate into a turbulent, two-dimensional incompressible boundary layer. The present mixing length is continuous from the wall through to the inner-law region of the flow, and although empirical, has been shown to predict wall shear stress and heat transfer data for a wide range of blowing rates.


2011 ◽  
Vol 46 (6) ◽  
pp. 917-934 ◽  
Author(s):  
V. Ya. Borovoi ◽  
I. V. Egorov ◽  
A. Yu. Noev ◽  
A. S. Skuratov ◽  
I. V. Struminskaya

Sign in / Sign up

Export Citation Format

Share Document