Laser Cladding with Multi Elemental Powder Feed

Author(s):  
T. Takeda ◽  
W. M. Steen ◽  
D. R. F. West
2008 ◽  
Vol 375-376 ◽  
pp. 338-342 ◽  
Author(s):  
Xia Ji ◽  
Jian Zhong Zhou ◽  
Hua Feng Guo ◽  
Da Peng Xu

This paper presents an experimental investigation on the metal components fabricated by laser cladding. In the present study, two process of laser cladding were conducted, that is pre-placed powder cladding and coaxial powder-feed cladding. The effect of processing parameters was studied and optimum set of parameters for the superior surface quality was established by employing the orthogonal design. The fabricated components were subjected to metallographic examinations and micro-hardness measurement. Results indicated that the microstructure of coaxial cladding components was finer than pre-placed powder cladding components. The micro-hardness of the fabricated specimen along and vertical the scanning direction were measured using a HVS-1000 micro-hardness tester with a 200 g applied load. Analysis of the physical properties provided further evidence of differences in micro-hardness produced by different process conditions, and the average micro-hardness value of pre-placed power cladding layer was lower than the coaxial powder-feed cladding layer.


2010 ◽  
Vol 154-155 ◽  
pp. 959-963
Author(s):  
Zhao Mei Xu ◽  
Zong Hai Hong

This paper presents an experimental research on the metal parts manufactured by laser cladding. The present studies showed two processes were conducted ,including coaxial powder-feed cladding and pre-placed powder cladding. The effect of processing parameters were studied and optimum set of parameters for the superior surface quality was established by employing the orthog -onal design. The manufactured parts were subjected to metallographic examination and micro -hardness measurement. Results showed that the microstructure of coaxial cladding parts was better than that of pre-placed powder cladding parts. The micro-hardness of the manufactured specimen along and vertical the scanning direction were measured using a HVS-1000 micro-hardness tester with a 200g applied load. Analysis of the physical properties provided further evidence of differences in micro-hardness produced by different process conditions, and the average micro -hardness value of pre-placed power cladding layer was lower than that of the coaxial powder-feed cladding layer.


MRS Advances ◽  
2017 ◽  
Vol 2 (26) ◽  
pp. 1381-1386 ◽  
Author(s):  
Takeshi Okuno ◽  
Yasuyuki Kaneno ◽  
Takuto Yamaguchi ◽  
Takayuki Takasugi ◽  
Satoshi Semboshi ◽  
...  

ABSTRACTNi base intermetallic alloy coating was fabricated by laser cladding, controlling the laser power and powder feed rate. Atomized powder of the Ni base intermetallic alloy was laser-cladded on the substrate of stainless steel 304. The hardness and microstructure of the clad layers were investigated by Vickers hardness test, SEM, XRD and TEM observations. The hardness of the cladding layer was affected by the dilution with the substrate; it increased with decreasing laser power and increasing powder feed rate. By optimizing the dilution with the substrate, the cladding layer with an almost identical hardness level to that of the Ni base intermetallic alloy fabricated by ingot metallurgy was obtained. The TEM observations revealed that a very fine-sized microstructure composed of Ni3Al and Ni3V was partially formed even in the as-cladded state. After annealing, the two-phase microstructure composed of Ni3Al and Ni3V was developed in the cladding layer, resulting in enhanced hardness in the cladding layers fabricated in the majority of cladding conditions.


Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 728 ◽  
Author(s):  
Yu ◽  
Sun ◽  
Huang ◽  
Wang ◽  
Wang ◽  
...  

This paper aimed to establish a nonlinear relationship between laser cladding process parameters and the crack density of a high-hardness, nickel-based laser cladding layer, and to control the cracking of the cladding layer via an intelligent algorithm. By using three main process parameters (overlap rate, powder feed rate, and scanning speed), an orthogonal experiment was designed, and the experimental results were used as training and testing datasets for a neural network. A neural network prediction model between the laser cladding process parameters and coating crack density was established, and a genetic algorithm was used to optimize the prediction results. To improve their prediction accuracy, genetic algorithms were used to optimize the weights and thresholds of the neural networks. In addition, the performance of the neural network was tested. The results show that the order of influence on the coating crack sensitivity was as follows: overlap rate > powder feed rate > scanning speed. The relative error between the predicted value and the experimental value of the three-group test genetic algorithm-optimized neural network model was less than 9.8%. The genetic algorithm optimized the predicted results, and the technological parameters that resulted in the smallest crack density were as follows: powder feed rate of 15.0726 g/min, overlap rate of 49.797%, scanning speed of 5.9275 mm/s, crack density of 0.001272 mm/mm2. Therefore, the amount of crack generation was controlled by the optimization of the neural network and genetic algorithm process.


Author(s):  
G. M. Eboo ◽  
A. G. Blake

Using dynamic powder feed it is now possible to laser hardface many low grade metallic materials with high grade alloy, ceramic, and superalloy coatings. A wide variety of components from pump housings, turbine blades, oil field drilling equipment to automobile and construction equipment can be laser hardfaced with superior metallurgical results and cost savings. This paper examines laser dynamic powder feed technology applied to gas turbine and other industrial components.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 369 ◽  
Author(s):  
Jiangtong Yu ◽  
Wenlei Sun ◽  
Haibo Huang ◽  
Yong Huang

To reduce the deformation and improve the quality of thin-walled parts repaired by laser cladding, a three-factor, three-level orthogonal experimental scheme was employed to clad Ni60 powder on thin-walled parts with a thickness of 3.5 mm. To measure the deformation of the thin-walled parts, a method of combining the meshing of the backs of the thin-walled parts and fixing one end of the parts during cladding was used. The effects of the powder feed rate, laser power, and scanning speed on the deformation of the thin-walled parts were studied via visual analysis and analysis of variance, and the process parameters that resulted in the minimum deformation were determined. The deformation process of the thin-walled parts and the causes of cladding stress were also studied, and the microstructure of the cladding layer with the minimum deformation was analyzed via scanning electron microscopy (SEM). The results reveal that the deformation of the thin-walled parts increased with the increase of laser power. The increases of the scanning speed and powder feed rate were found to reduce the deformation of thin-walled parts; the laser power was found to have a significant effect, and the powder feed rate was found to have no significant effect, on the deformation of thin-walled parts. The order of the influence of factors on the deformation of thin-walled parts from greatest to least was determined to be as follows: laser power > scanning speed > powder feed rate. The optimal parameters to obtain the minimum deformation and good metallurgical bonding of thin-walled parts were found to be a powder feed rate of 1.4 r/min, a laser power of 1100 W, and a scanning speed of 8 mm/s. From the bottom to the top, the crystal structure of the coating with the minimum deformation was found to be coarse dendrite, dendritic crystal, and equiaxed crystal.


2011 ◽  
Vol 216 ◽  
pp. 424-429
Author(s):  
Xu Yue Wang ◽  
H.R. Guo ◽  
Yong Bo Wu ◽  
Wen Ji Xu ◽  
D.M. Guo

Laser cladding of micro-fluidic channels mold was performed using Nd:YAG laser and synchronous powder feeder. Influences of laser power and powder feed rate on clad layer geometrical dimensions and qualities were investigated. Results show that powder feed rate 1.5-2.5 g/min used obtains micro clad layers which meet geometrical dimensions’ requirement of micro-fluidic channels mold and combination of parameters laser power 400 W and powder feed rate 2.0 g/min achieves micro clad layer with better clad quality. Scanning paths of micro-fluidic channels mold was planned through CAD-CAM software. Using optimum parameters combination, multilayer laser cladding experiment was carried out and a sample of micro-fluidic channels mold was fabricated with expectative structure and hardness. A little milling and polishing makes the sample meet technical requirements, 0.2mm in height and 0.3mm in width. Fabricating a mold takes 15-20 min totally.


Author(s):  
Kevin C. Schoeffel ◽  
Yung C. Shin

Blown-powder laser cladding is an efficient method for enhancing the surface properties of engineering components while preserving the properties of the base material. High power direct diode lasers (HPDDLs) offer wide beams with nearly uniform intensity distribution, allowing the deposition of wide clad tracks with flatter profiles than those produced with a Gaussian beam. In this work, a 4.0 kW HPDDL is used to perform blown-powder cladding on AISI 4140 and AISI 5150 steel shafts. The first part of the experiments concerns two-layer circumferential tracks created from two commonly used hardfacing alloys: Stellite 6 (Co-Cr alloy) and Nistelle 625 (Ni-Cr alloy). The effects of laser power and powder feed rate on the clad geometry are assessed. Increasing the powder feed rate and holding constant all other parameters decreases the track width-to-thickness aspect ratio. All tracks exhibit dendrite microstructures that are characteristic of powder-based clad tracks. The tracks exhibit no cracks or porosity. Energy dispersive X-ray (EDX) analysis reveals dilution of five percent or less between the clad and substrate materials. The second part of the experiments concerns overlapping of single-layer clad tracks in a continuous helical pattern on the substrate to form a layer that covers a large area. Clad layer thickness and inter-track porosity are measured to determine the optimum degree of overlap for producing a high-quality clad layer. The thickness of the resulting Stellite 6 and Nistelle 625 clad layers decreases as the overlap percentage decreases. No inter-track, interfacial, or bulk pores are present for any tests, comprising overlap percentages of 50% and lower.


Sign in / Sign up

Export Citation Format

Share Document