Experimental Investigation on the Nickel-Based Metal Components Fabricated by Laser Cladding

2008 ◽  
Vol 375-376 ◽  
pp. 338-342 ◽  
Author(s):  
Xia Ji ◽  
Jian Zhong Zhou ◽  
Hua Feng Guo ◽  
Da Peng Xu

This paper presents an experimental investigation on the metal components fabricated by laser cladding. In the present study, two process of laser cladding were conducted, that is pre-placed powder cladding and coaxial powder-feed cladding. The effect of processing parameters was studied and optimum set of parameters for the superior surface quality was established by employing the orthogonal design. The fabricated components were subjected to metallographic examinations and micro-hardness measurement. Results indicated that the microstructure of coaxial cladding components was finer than pre-placed powder cladding components. The micro-hardness of the fabricated specimen along and vertical the scanning direction were measured using a HVS-1000 micro-hardness tester with a 200 g applied load. Analysis of the physical properties provided further evidence of differences in micro-hardness produced by different process conditions, and the average micro-hardness value of pre-placed power cladding layer was lower than the coaxial powder-feed cladding layer.

2010 ◽  
Vol 154-155 ◽  
pp. 959-963
Author(s):  
Zhao Mei Xu ◽  
Zong Hai Hong

This paper presents an experimental research on the metal parts manufactured by laser cladding. The present studies showed two processes were conducted ,including coaxial powder-feed cladding and pre-placed powder cladding. The effect of processing parameters were studied and optimum set of parameters for the superior surface quality was established by employing the orthog -onal design. The manufactured parts were subjected to metallographic examination and micro -hardness measurement. Results showed that the microstructure of coaxial cladding parts was better than that of pre-placed powder cladding parts. The micro-hardness of the manufactured specimen along and vertical the scanning direction were measured using a HVS-1000 micro-hardness tester with a 200g applied load. Analysis of the physical properties provided further evidence of differences in micro-hardness produced by different process conditions, and the average micro -hardness value of pre-placed power cladding layer was lower than that of the coaxial powder-feed cladding layer.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 793 ◽  
Author(s):  
Guofu Lian ◽  
Hao Zhang ◽  
Yang Zhang ◽  
Mingpu Yao ◽  
Xu Huang ◽  
...  

The influence of processing parameters on the micro-hardness and wear resistance of a Ni-based alloy and titanium carbide (TiC) composite cladding layer was studied. Mathematical models were developed to predict the micro-hardness and wear resistance of the cladding layer by controlling the laser cladding processing parameters. Key processing parameters were the laser power, scanning speed, gas flow, and TiC powder ratio. The models were validated by analysis of variance and parameter optimization. Results show that the micro-hardness is positively correlated with laser power and TiC powder ratio, where the TiC powder ratio shows the most significant impact. The wear volume decreased with an increasing TiC powder ratio. The targets for the processing parameter optimization were set to 62 HRC for micro-hardness and a minimal volume wear. The difference between the model prediction value and experimental validation result for micro-hardness and wear volume were 1.87% and 6.33%, respectively. These models provide guidance to optimize the processing parameters to achieve a desired micro-hardness and maximize wear resistance in a composite cladding layer.


2020 ◽  
Vol 10 (9) ◽  
pp. 3167 ◽  
Author(s):  
Guofu Lian ◽  
Chenmin Zhao ◽  
Yang Zhang ◽  
Meiyan Feng ◽  
Jibin Jiang

In order to improve the performance of the cladding layer, this study used the Taguchi orthogonal design to investigate the influence of laser power, scanning speed, gas flow, and SiC powder ratio on the micro-hardness and wear volume of the cladding layer. The results indicate that the SiC powder ratio was the major factor that had the main impact on the micro-hardness and wear volume of the cladding layer. The contribution of SiC powder ratio on the micro-hardness and wear volume are 92.08% and 79.39%, respectively. Through signal to noise ratio conversion and combining grey relational analysis, the multiple objectives optimization was attained. With the target of maximizing the micro-hardness and minimizing the wear volume simultaneously, grey relational analysis was applied to obtain the optimal processing parameters set and predict the corresponding grey relational grade. The error rate was 5.3% between the prediction and experimental validation. This study provides the guidance for optimizing multiple goals at the same time using grey relational analysis about the coating properties deposited by laser cladding in actual industrial applications. It provided theoretical basis for the processing parameters optimization with targeting the micro-hardness and wear resistance.


2012 ◽  
Vol 271-272 ◽  
pp. 3-7
Author(s):  
Long Wei ◽  
Zong De Liu ◽  
Xin Zhi Li ◽  
Ming Ming Yuan ◽  
Cheng Yuan Zhong

Cr3C2-NiCr has high quality of wear resistant properties and is widely used in abrasive environment. In this paper, Cr3C2-NiCr coating was prepared on 45 steel by laser cladding technology. Analysis and research of the coatings were achieved by SEM and XRD to determine the main component and the different region on coatings. The hardness and the element component were investigated by micro-hardness tester and EDS. Abrasion tests were performed to contrast the wear resistance of two materials. The results indicate that the hardness of the coatings is nearly 3 times as the substrate. The coatings are well combined with the substrate and the phase of Cr3C2 has a large proportion in the coatings. Abrasion tests show that the average of wear rate on substrate is 5.2 times as the coatings.


2011 ◽  
Vol 138-139 ◽  
pp. 732-736
Author(s):  
Ba Sheng Ouyang ◽  
Run Juan You

Cladding experiment with parameter variations was presented to manufacture the better processing property coating by laser cladding self-fused Ni-based ceramic powder of ZrO2 composite on the excircle surface of 304 SUS. The influence of the laser process parameters on macroscopic view, microstructure and micro-hardness of the laser cladding layers were investigated. The results show that we can get better coating when laser power is 1.5KW, and that the cladding layer microstructure has the trend of refined framework with the growing of scanning speed; micro-hardness will be higher and distribution from substratum to surface with little fluctuate by optimizing scanning speed.


Author(s):  
Mingsan Xu ◽  
Jibin Jiang ◽  
Bingbing Li ◽  
Weilong Cong ◽  
Dongdong Zhang

The purpose of this investigation is to test the laser cladding of different alloy powders onto 1045 medium-carbon steel substrates for parts remanufacturing. The types of alloy powder, laser output powers, and scanning speeds are selected as influencing factors to conduct laser cladding experiments with orthogonal design on the carbon steel 1045 substrate. Bonding shear strength and microhardness of the cladding layer and the substrate are tested and analyzed. The high resolution scanning electron microscopy and energy dispersive X-ray spectroscopy are also used to analyze cladding layers, microstructures, and elements. The experimental results show that a good metallurgical bond is formed between the cladding layer and the substrate without porous cracks and other defects. Shear stress intensity of nickel-based powder is two to three times higher than that of substrate material, while iron-based powder is five times higher than the substrate material. The type of the powder is the most significant factor and laser power is the least. The hardness of outer cladding layer is higher than that of bonding section and inner section. In the heat-affected zone, hardness is higher than that of the substrate material.


2009 ◽  
Vol 407-408 ◽  
pp. 676-679
Author(s):  
Xia Ji ◽  
Jian Zhong Zhou ◽  
Feng Qiu ◽  
Su Qing Jiang

The optimization of processing parameters for laser cladding process based on Statistical Analysis System (SAS) software was investigated and the experimental investigation on Ni-based alloy components fabricated by laser cladding was carried out. The influences of the main processing parameters on the surface quality were analyzed, and the Ni-based components with superior surface quality were obtained by employing the optimum set of parameters. The surface morphology and microstructure of the components were analyzed. Results indicate that the surface of the cladding is rather smooth and the claddings have a unique microstructure consisting of primary dendrite. The laser cladding layer with integrated melt interface and without reheat cracking can be obtained by optimizing the process variables. The investigations show that the components fabricated by laser cladding process have better mechanical properties than that of the conventional manufacturing technology.


2011 ◽  
Vol 189-193 ◽  
pp. 830-833
Author(s):  
Yong Tao Zhao ◽  
Wen Xue Li ◽  
Jun Wei Zhou

The laser cladding of Fe power technology was used to repair worn plunger piston surface. The microstructure of cladding layer, binder course and the matrix were observed by OM and SEM. Besides, the micro-hardness of different zones was measured through micro-hardness testing. The results show that the matrix metal microstructure of plunger piston is made of ferrite and austenite. By laser cladding Fe-based power on base metal, the cladding layer grain is fine and uniform, grain growth has obvious direction and finally become dendrites oriented, the microstructure of cladding layer is both second-phase hard particles and Fe-based solutes. The combination between matrix and cladding layer is smooth, belong to metallurgy bonding. The hardness of cladding layer is higher than that of other parts in three parts, the max value of micro-hardness is about 1250HV, it can agree with wear resistance need of plunge piston surface.


2019 ◽  
Vol 813 ◽  
pp. 185-190 ◽  
Author(s):  
Fazati Bourahima ◽  
Anne Laure Helbert ◽  
Vincent Ji ◽  
Michel Rege ◽  
Arnaud Courteaux ◽  
...  

In glass industry, laser cladding is an innovative surfacing technique allowing to deposit a layer of nickel to protect glass mold against corrosion, abrasion and thermal fatigue. This method (powder fusion by projection), well known in additive manufacturing represents a real technological leap for the glass industry. But during laser cladding of Ni-based powder on gray cast iron, cracks can be observed for some process conditions. These cracks are often due to the Heat Affected Zone that creates structural stresses linked to the development of a martensitic structure in the ferritic matrix of the lamellar graphite cast iron. The aim of this work is to observe the impact of laser cladding (without substrate pre-heating usually employed to limit cracking) on the coating behavior but also on the flake-graphite cast iron substrates. The microstructure and the mechanical properties were studied (SEM and microanalysis, microhardness) around the interface cladding/substrate. Also, the impact of the processing parameters (power P (1500-2300 W), scanning speed v (2.5-10 mm/s) and powder feeding rate PFR (24.5-32.5 g/min) was studied by using the ANOVA (ANalysis Of VAriance) technique. It has been observed that laser cladding on graphite cast iron is possible without cracks by limiting the linear energy induced by the process. Also, an optimization of the processing parameters (P, v, PFR) in order to obtain the industrial expected geometry of the coating has been proposed.


2014 ◽  
Vol 551 ◽  
pp. 3-6
Author(s):  
Shu Guo Zhao ◽  
Xiao Min Yao ◽  
Rui Li

The Cubic boron nitride (CBN) coating are prepared by laser cladding on the TC11 surface.The hardness of cladding coating were researched by means of mechanical property testing.The result indicated that the coating micro-hardness increases with increasing laser power when the other parameters are fixed.With the laser power increasing,Injection of energy increases,The reinforced phase increased,microhardness along with it enhancement.With the increase of the scanning speed within chose, the microstructure of the cladding layer changes tiny and uniform,the microhardness were increased,The hardness was increased greatly which after Laser hardening. The maximum values of them are as about five times as that of the substrate.


Sign in / Sign up

Export Citation Format

Share Document