Real-Time Operational Reliability

Author(s):  
J. Knezevic
2018 ◽  
Vol 33 (4) ◽  
pp. 1081-1092 ◽  
Author(s):  
Charles R. Sampson ◽  
James S. Goerss ◽  
John A. Knaff ◽  
Brian R. Strahl ◽  
Edward M. Fukada ◽  
...  

Abstract In 2016, the Joint Typhoon Warning Center extended forecasts of gale-force and other wind radii to 5 days. That effort and a thrust to perform postseason analysis of gale-force wind radii for the “best tracks” (the quality controlled and documented tropical cyclone track and intensity estimates released after the season) have prompted requirements for new guidance to address the challenges of both. At the same time, operational tools to estimate and predict wind radii continue to evolve, now forming a quality suite of gale-force wind radii analysis and forecasting tools. This work provides an update to real-time estimates of gale-force wind radii (a mean/consensus of gale-force individual wind radii estimates) that includes objective scatterometer-derived estimates. The work also addresses operational gale-force wind radii forecasting in that it provides an update to a gale-force wind radii forecast consensus, which now includes gale-force wind radii forecast error estimates to accompany the gale-force wind radii forecasts. The gale-force wind radii forecast error estimates are computed using predictors readily available in real time (e.g., consensus spread, initial size, and forecast intensity) so that operational reliability and timeliness can be ensured. These updates were all implemented in operations at the Joint Typhoon Warning Center by January 2018, and more updates should be expected in the coming years as new and improved guidance becomes available.


2014 ◽  
Vol 6 ◽  
pp. 179293 ◽  
Author(s):  
Yifan Wang ◽  
Xin Gao ◽  
Hanxu Sun ◽  
Qingxuan Jia ◽  
Wencan Zhao ◽  
...  

A control method based on real-time operational reliability evaluation for space manipulator is presented for improving the success rate of a manipulator during the execution of a task. In this paper, a method for quantitative analysis of operational reliability is given when manipulator is executing a specified task; then a control model which could control the quantitative operational reliability is built. First, the control process is described by using a state space equation. Second, process parameters are estimated in real time using Bayesian method. Third, the expression of the system's real-time operational reliability is deduced based on the state space equation and process parameters which are estimated using Bayesian method. Finally, a control variable regulation strategy which considers the cost of control is given based on the Theory of Statistical Process Control. It is shown via simulations that this method effectively improves the operational reliability of space manipulator control system.


2019 ◽  
Vol 11 (9) ◽  
pp. 1030 ◽  
Author(s):  
Hessner ◽  
El Naggar ◽  
von Appen ◽  
Strass

Real-time quality-controlled surface current data derived from X-Band marine radar (MR) measurements were evaluated to estimate their operational reliability. The presented data were acquired by the standard commercial off-the-shelf MR-based sigma s6 WaMoS® II (WaMoS® II) deployed onboard the German Research vessel Polarstern. The measurement reliability is specified by an IQ value obtained by the WaMoS® II real-time quality control (rtQC). Data which pass the rtQC without objection are assumed to be reliable. For these data sets accuracy and correlation with corresponding vessel-mounted acoustic Doppler current profiler (ADCP) measurements are determined. To reduce potential misinterpretation due to short-term oceanic variability/turbulences, the evaluation of the WaMoS® II accuracy was carried out based on sliding means over 20 min of the reliable data only. The associated standard deviation σWaMoS = 0.02 m/s of the mean WaMoS® II measurements reflect a high precision of the measurement and the successful rtQC during different wave, current and weather conditions. The direct comparison of 7272 WaMoS® II/ADCP northward and eastward velocity data pairs yield a correlation of r ≥0.94, with bias∆ ≤0.06 m/s and σS=0.05 m/s. This confirms that the MR-based surface current measurements are accurate and reliable.


2018 ◽  
Vol 8 (10) ◽  
pp. 1726 ◽  
Author(s):  
Yu Huang ◽  
Qingshan Xu ◽  
Guang Lin

The great proliferation of wind power generation has brought about great challenges to power system operations. To mitigate the ramifications of wind power uncertainty on operational reliability, predictive scheduling of generation and transmission resources is required in the day-ahead and real-time markets. In this regard, this paper presents a risk-averse stochastic unit commitment model that incorporates transmission reserves to flexibly manage uncertainty-induced congestion. In this two-settlement market framework, the key statistical features of line flows are extracted using a high-dimensional probabilistic collocation method in the real-time dispatch, for which the spatial correlation between wind farms is also considered. These features are then used to quantify transmission reserve requirements in the transmission constraints at the day-ahead stage. Comparative studies on the IEEE 57-bus system demonstrate that the proposed method outperforms the conventional unit commitment (UC) to enhance the system reliability with wind power integration while leading to more cost-effective operations.


2018 ◽  
Vol 19 (3) ◽  
pp. 311 ◽  
Author(s):  
Morteza Montazeri-Gh ◽  
Seyed Alireza Miran Fashandi ◽  
Soroush Abyaneh

A hardware-in-the-loop (HIL) test for a control unit of an industrial gas turbine engine is performed to evaluate the designed controller. Although the dynamic performance of the studied gas turbine is strictly related to the variable inlet guide vain (VIGV) position, one of the main challenges is to develop an engine model considering VIGV variations. The model should also be capable of real time simulation. Accordingly, the gas turbine is numerically modeled using bond graph concepts. To demonstrate the operational reliability of the engine’s control strategy, the control algorithm is implemented on an industrial hardware as an embedded system. This is then put into a HIL test along with the engine model. The actual component (controller) and the virtual engine model are the hardware and software parts of the HIL test, respectively. In this experiment, the interaction between the real part and the rest of the system is compared with that of the completely numerical model in which the controller is a simulated software-based model as is the engine itself. Finally, the results indicate that the physical constraints of the engine are successfully satisfied through the implementation of control algorithms on the utilized hardware.


1979 ◽  
Vol 44 ◽  
pp. 41-47
Author(s):  
Donald A. Landman

This paper describes some recent results of our quiescent prominence spectrometry program at the Mees Solar Observatory on Haleakala. The observations were made with the 25 cm coronagraph/coudé spectrograph system using a silicon vidicon detector. This detector consists of 500 contiguous channels covering approximately 6 or 80 Å, depending on the grating used. The instrument is interfaced to the Observatory’s PDP 11/45 computer system, and has the important advantages of wide spectral response, linearity and signal-averaging with real-time display. Its principal drawback is the relatively small target size. For the present work, the aperture was about 3″ × 5″. Absolute intensity calibrations were made by measuring quiet regions near sun center.


Author(s):  
Alan S. Rudolph ◽  
Ronald R. Price

We have employed cryoelectron microscopy to visualize events that occur during the freeze-drying of artificial membranes by employing real time video capture techniques. Artificial membranes or liposomes which are spherical structures within internal aqueous space are stabilized by water which provides the driving force for spontaneous self-assembly of these structures. Previous assays of damage to these structures which are induced by freeze drying reveal that the two principal deleterious events that occur are 1) fusion of liposomes and 2) leakage of contents trapped within the liposome [1]. In the past the only way to access these events was to examine the liposomes following the dehydration event. This technique allows the event to be monitored in real time as the liposomes destabilize and as water is sublimed at cryo temperatures in the vacuum of the microscope. The method by which liposomes are compromised by freeze-drying are largely unknown. This technique has shown that cryo-protectants such as glycerol and carbohydrates are able to maintain liposomal structure throughout the drying process.


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


Sign in / Sign up

Export Citation Format

Share Document