Influence of Acoustic Disturbances on the Separation Flow Characteristics Behind Two Semi-Infinite Circular Cylinders

1991 ◽  
pp. 719-722
Author(s):  
S. P. Bardakhanov ◽  
V. V. Larichkin
2014 ◽  
Vol 670-671 ◽  
pp. 747-750
Author(s):  
Zhi Jun Gong ◽  
Jiao Yang ◽  
Wen Fei Wu

For indepth study on flow characteristics for fluid bypass obstacles in micro-channel, the Lattice Boltzmann Method (LBM) was used to simulate fluid flow over two circular cylinders in side-by-side arrangement of a micro-channel. The velocity distribution and recirculation zone length under different Reynolds numbers (Re = 0~100) and different spacing ratio (H/D= 0~2.0) were obtained. The results show that the pattern of flow and the size of recirculation zone in the micro-channel depend on the combined effect of Re and H/D.


2017 ◽  
Vol 379 ◽  
pp. 48-57 ◽  
Author(s):  
Cheng Hsiung Kuo ◽  
Hwa Wei Lin ◽  
Chih Tao Chai ◽  
Fred Cheng

Alterations of boundary layer separation along the upper-rear surface of a baseline and slit cylinder and the formation of a vortex in the near-wake are investigated by particle image velocimetry (PIV) at Reynolds number 1000. The slit ratio (S/D) is 0.3. The phase-lock flow structures are referred to the time-dependent volume flux at the slit exit and are achieved by the modified phase-averaged technique. The alterations and the evolution of boundary-layer flow along the upper-rear surface are demonstrated by the phase-lock flow structures. It is found that the alternate blowing and suction at the slit exit serves as a perturbation to the boundary layer near the shoulder of the slit cylinder leading to a significant delay of flow separation and the flow reattachment of boundary-layer flow along the upper-rear surface of the cylinder. After perturbation, the vortex street behind a slit cylinder is more organized and stronger than that behind a baseline cylinder at Reynolds number 1000.


2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040081
Author(s):  
Shi-Jie Luo ◽  
Yao-Feng Liu ◽  
Yu-Wei Liu

The lateral jet interaction on a slender body in supersonic flow was investigated by numerical simulation. The spatial and surface flow characteristics induced by jet interaction were shown. As a result, when the lateral jet is not in the longitudinal symmetry plane, the jet interaction causes asymmetric separation flow of surface and space, and destroys the pressure distributions of the slender body. With different angle of attack and circumferential positions of jet, the flow characteristic of the after body for jet in asymmetry plane changes greatly. The results with and without jet interaction also show that the far-field interaction played a major role in the lateral jet interaction.


Author(s):  
Yangyang Gao ◽  
Xikun Wang ◽  
Soon Keat Tan

The wake structure behind two staggered circular cylinders with unequal diameters was investigated experimentally using the particle image velocimetry technique (PIV). This investigation was focused on the variations of flow patterns in terms of incident angle at Reynolds number Re = 1200. Comparisons of the time-averaged flow field of two staggered cylinders with unequal diameters at different angles were made to elucidate the mean flow characteristics. The characteristics of Reynolds shear stress contours at different incident angles and spacing ratios were also investigated. The results showed that with increasing of incident angle, the scale of Reynolds stress contours behind the upstream cylinder becomes larger, as well as the effect of spacing ratio on Reynolds stress contours.


2014 ◽  
Vol 886 ◽  
pp. 413-416
Author(s):  
Yong Tao Wang ◽  
Zhong Min Yan ◽  
Hui Min Wang

The flow past two tandem circular cylinders of different diameters is simulated by using a finite volume method. The diameter of the downstream main cylinder is kept constant, and the diameter ratio between the upstream control cylinder and the downstream one is varied from 0.1 to 1.0. The Reynolds number based on the diameter of the downstream main cylinder is 100 and 150. The gap between the control cylinder and the main cylinder ranges from 0.1 to 4.0 times the diameter of the main cylinder. It is concluded that the gap ratio and the diameter ratio between the two cylinders have important effects on the drag coefficients and flow characteristics.


Sign in / Sign up

Export Citation Format

Share Document