Visualization of asymmetric separation induced by lateral jet interaction on a slender body in supersonic flow

2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040081
Author(s):  
Shi-Jie Luo ◽  
Yao-Feng Liu ◽  
Yu-Wei Liu

The lateral jet interaction on a slender body in supersonic flow was investigated by numerical simulation. The spatial and surface flow characteristics induced by jet interaction were shown. As a result, when the lateral jet is not in the longitudinal symmetry plane, the jet interaction causes asymmetric separation flow of surface and space, and destroys the pressure distributions of the slender body. With different angle of attack and circumferential positions of jet, the flow characteristic of the after body for jet in asymmetry plane changes greatly. The results with and without jet interaction also show that the far-field interaction played a major role in the lateral jet interaction.

2013 ◽  
Vol 404 ◽  
pp. 296-301
Author(s):  
Shi Jie Luo ◽  
Yao Feng Liu ◽  
Ning Cao

A numerical investigation has been conducted to research the interaction flowfield of lateral jet not in the longitudinal symmetry plane on a slender body with rudders in supersonic flow. The surface and space flow features of jet interaction flowfield with different angles of attack was analyzed. The paper also compared with and without jet interaction flowfield characteristics. As a result, the jet interaction destroys pressure distributions of the slender body, and causes normal and lateral loads. With angle of attack, the pressure distributions of the after body and rudders surfaces are change tempestuously. The results also show that the far-field interference played a major role in the lateral jet interaction. Besides, the force/moment amplification factors present highly nonlinear with angle of attack.


2014 ◽  
Vol 565 ◽  
pp. 107-112
Author(s):  
Shi Jie Luo

The lateral jet interaction on a slender body with rudders in supersonic flow had been investigated by numerical simulation, when the lateral jet is not in the longitudinal symmetry plane. It was called Asymmetrical lateral jet interaction in this paper. The flow features of jet interaction flowfield on the surface of the body or in the space far from the surface at different angles of attack and total pressure of jet was analyzed. As a result, the lateral jet interaction disturbed the pressure distributions of the slender body, and it was divided into near-field interaction near jet and far-field interaction aft-body on the basis of distance to jet. With the variety of the angle of attack and total pressure of jet, the pressure distributions at the aft-body change tempestuously, thereby the normal and lateral load will be from positive to negative, or reverse. The results also showed that the far-field interaction played a major role in the lateral jet interaction on a slender body in supersonic flow. The far-field interaction was caused by the changing of the outflow direction and intensity. Besides, the force/moment amplification factors presented highly nonlinear with the variety of angle of attack and total pressure of jet.


Author(s):  
Jieli Wei ◽  
Xiaomin He ◽  
Yakun Huang ◽  
Yi Zhou ◽  
Guanji Gong

In order to obtain the flow characteristics of sub-super-sonic mixing layer including velocity distribution, pressure distribution and development of mixing layer, experimental and numerical investigations were conducted. PIV technique was employed to measure the two-dimensional velocity distribution in the experiment while the standard k-ω turbulent considering the effect of compressibility was adopted to simulate the flow characteristic of mixing layer. The Mach number of subsonic stream and supersonic one was 0.11 and 1.32, respectively. The results show the flow of mixing layer is temporally transient. The interface between two streams lies initially as an approximately line segment; afterward, it becomes wrinkled and distorted; finally, it breaks up. The mixing layer develops linearly along streamwise direction in the time averaged velocity field with a growth rate of 0.135. The velocity and total pressure distributions in the mixing layer are self-similar.


Author(s):  
Xiaoming Chen ◽  
Yuchuan Zhu ◽  
Travis Wiens ◽  
Doug Bitner ◽  
Minghao Tai ◽  
...  

The inertance hydraulic converter relies on fluid inertance to modulate flow or pressure and is considered to be a competitive alternative to the conventional proportional hydraulic system due to its potential advantage in efficiency. As the quantification of fluid inertance, the suction flow characteristic is the crucial performance indicator for efficiency improvement. To explore the discrepancy between the passive inertance hydraulic converter featured by the check valve and the active inertance hydraulic converter driven by an equivalent 2/3 way fast switching valve in regard to suction flow characteristics, analytical models of the inertance hydraulic converters were established in MATLAB/Simulink. The validated models of the respective suction components were incorporated in the overall analytical models and their suction flow characteristics were theoretically and experimentally discussed. The analytical predictions and experimental measurements for the current configurations indicated that the active inertance hydraulic converter yields a larger transient suction flow rate than that of the passive inertance hydraulic converter due to the difference of the respective suction components. The suction flow characteristic can be modulated using the supply pressure and duty cycle, which was confirmed by experimental measurements. In addition, the suction flow characteristics are heavily affected by the resistance of the suction flow passage and switching frequency. There is a compromise between the resistance and switching frequency for inertance hydraulic converters to achieve large suction flow rate.


Author(s):  
Christian Raab ◽  
Kai Rohde-Brandenburger

AbstractThe determination of structural loads plays an important role in the certification process of new aircraft. Strain gauges are usually used to measure and monitor the structural loads encountered during the flight test program. However, a time-consuming wiring and calibration process is required to determine the forces and moments from the measured strains. Sensors based on MEMS provide an alternative way to determine loads from the measured aerodynamic pressure distribution around the structural component. Flight tests were performed with a research glider aircraft to investigate the flight loads determined with the strain based and the pressure based measurement technology. A wing glove equipped with 64 MEMS pressure sensors was developed for measuring the pressure distribution around a selected wing section. The wing shear force determined with both load determination methods were compared to each other. Several flight maneuvers with varying loads were performed during the flight test program. This paper concentrates on the evaluation of dynamic flight maneuvers including Stalls and Pull-Up Push-Over maneuvers. The effects of changes in the aerodynamic flow characteristics during the maneuver could be detected directly with the pressure sensors based on MEMS. Time histories of the measured pressure distributions and the wing shear forces are presented and discussed.


1997 ◽  
Vol 119 (2) ◽  
pp. 310-319 ◽  
Author(s):  
Sang Woo Lee ◽  
Yong Beom Kim ◽  
Joon Sik Lee

Oil-film flow visualizations and three-dimensional flow measurements using a five-hole probe have been conducted to investigate the flow characteristics and aerodynamic loss distributions of film-cooling jets with compound angle orientations. For a fixed inclination angle of the injection hole, measurements are performed at various orientation angles to the direction of the mainstream in the case of three velocity ratios of 0.5, 1.0, and 2.0. Flow visualizations for the velocity ratio of 2.0 show that the increase in the orientation angle furnishes better film coverage on the test surface, but gives rise to large flow disturbances in the mainstream. A near-wall flow model has been proposed based on the surface flow visualizations. It has also been found from the flow measurements that as the orientation angle increases, a pair of count-errotating vortices turn to a single strong one, and the aerodynamic loss field is closely related to the secondary flow. Even in the case of the velocity ratio of 2.0, aerodynamic loss is produced within the jet region when the orientation angle is large. Regardless of the velocity ratio, the mass-averaged aerodynamic loss increases with increasing orientation angle, the effect of which on aerodynamic loss is pronounced when the velocity ratio is large.


1989 ◽  
Vol 111 (4) ◽  
pp. 400-407 ◽  
Author(s):  
M. J. Morris ◽  
J. C. Dutton

The results of an experimental investigation into the flowfield characteristics of butterfly valves under compressible flow operating conditions are reported. The experimental results include Schlieren and surface flow visualizations and flowfield static pressure distributions. Two valve disk shapes have been studied in a planar, two-dimensional test section: a generic biconvex circular arc profile and the midplane cross-section of a prototype butterfly valve. The valve disk angle and operating pressure ratio have also been varied in these experiments. The results demonstrate that under certain conditions of operation the butterfly valve flowfield can be extremely complex with oblique shock waves, expansion fans, and regions of flow separation and reattachment. In addition, the sensitivity of the valve disk surface pressure distributions to the local geometry near the leading and trailing edges and the relation of the aerodynamic torque to flow separation and reattachment on the disk are shown.


Author(s):  
Mahmud R. Amin ◽  
Nallamuthu Rajaratnam ◽  
David Z. Zhu

Abstract This work presents an analytical study of the flow and energy loss immediately downstream of rectangular sharp-crested weirs for free and submerged flows, using the theory of plane turbulent jets and the analysis of some relevant studies. The flow regimes downstream of the sharp-crested weir is characterized as the impinging jet and surface flow regimes. Based on the flow characteristics and the downstream tailwater depths, each flow regime is further classified, and the relative energy loss equation is developed. It is found that significant energy loss occurs for the regime of supercritical flow and the upper stage of impinging jet flow. The energy loss for the submerged flow regime is minimal.


2013 ◽  
Vol 16 (1) ◽  
pp. 189-206 ◽  
Author(s):  
C. D. Erdbrink ◽  
V. V. Krzhizhanovskaya ◽  
P. M. A. Sloot

We combine non-hydrostatic flow simulations of the free surface with a discharge model based on elementary gate flow equations for decision support in the operation of hydraulic structure gates. A water level-based gate control used in most of today's general practice does not take into account the fact that gate operation scenarios producing similar total discharged volumes and similar water levels may have different local flow characteristics. Accurate and timely prediction of local flow conditions around hydraulic gates is important for several aspects of structure management: ecology, scour, flow-induced gate vibrations and waterway navigation. The modelling approach is described and tested for a multi-gate sluice structure regulating discharge from a river to the sea. The number of opened gates is varied and the discharge is stabilized with automated control by varying gate openings. The free-surface model was validated for discharge showing a correlation coefficient of 0.994 compared to experimental data. Additionally, we show the analysis of computational fluid dynamics (CFD) results for evaluating bed stability and gate vibrations.


1964 ◽  
Vol 86 (4) ◽  
pp. 869-880 ◽  
Author(s):  
Thomas Carmody

An air-tunnel study of the establishment of the wake behind a disk at a Reynolds number of approximately 7 × 104 was undertaken. On the basis of the measured data, such a wake is fully established, that is, similarity profiles of the flow characteristics are formed, within 15 diameters of the disk, and approximately 95 percent of the transfer of energy from the mean motion to the turbulence motion takes place within 3 diameters of the disk, in the region of the mean standing eddy. The measured mean ambient-pressure and mean total-pressure distributions, mean velocity distributions, turbulence-intensity and shear-stress distributions, and the mean streamline pattern are presented in graphical form, as are the quantitative balances of the integrated momentum and mean-energy relationships. A stream function consisting of a continuous distribution of doublets is introduced to extend the radial limit of understanding of the flow characteristics to a very large if not infinite radius. Considerable attention is given to the problem of obtaining and interpreting turbulence shear-stress data immediately downstream from the point of flow separation. The applicability of a local diffusion coefficient or virtual viscosity of the Boussinesq or Prandtl type for relating the turbulence shear stress to the radial gradient of mean axial velocity is discussed. The Bernoulli sum and the energy changes along individual streamlines investigated in an associated study are incorporated herein to obtain a quantitative estimate of the local errors involved in the turbulence-shear-stress measurements.


Sign in / Sign up

Export Citation Format

Share Document