The Role of Cyclic AMP in the Control of Cell Division

Author(s):  
J. R. Sheppard
Keyword(s):  
1993 ◽  
Vol 104 (4) ◽  
pp. 1163-1173 ◽  
Author(s):  
I.A. Carre ◽  
L.N. Edmunds

The achlorophyllous ZC strain of Euglena gracilis exhibits a circadian rhythm of cell division in constant darkness (DD). Mitosis occurs during a restricted part of the circadian cycle, corresponding to the dark intervals in a light-dark cycle comprising 12 h of light and 12 h of darkness. We have demonstrated that division-phased cultures also exhibit bimodal, circadian changes of cyclic AMP level. Maximum cyclic AMP levels occurred at the beginning of the light period (CT (circadian time) 00–02), and at the beginning of darkness (CT 12–14). These variations persisted in cultures that had been transferred into DD and appeared to be under the control of the circadian oscillator rather than to be cell division cycle (CDC)-dependent, since they continued in cultures that had reached the stationary phase of growth. In the experiments reported in this paper, we tested for the possible role of this periodic cyclic AMP signal in the generation of cell division rhythmicity by examining the effects of exogenous cyclic AMP signals and of forskolin, which permanently increased the cyclic AMP level, on the cell division rhythm. Perturbations of the cyclic AMP oscillation by exogenous cyclic AMP resulted in the temporary uncoupling of the CDC from the circadian timer. The addition of cyclic AMP during the subjective day resulted in delays (up to 9 h) of the next synchronous division step. In contrast, mitosis was stimulated when cyclic AMP was administered in the middle of the subjective night. Measurement of the DNA content of cells by flow cytometry indicated that cyclic AMP injected at CT 06–08 delayed progression through S phase, and perhaps also through mitosis. When added at CT 18–20, cyclic AMP accelerated the G2/M transition. The circadian oscillator was not perturbed by the addition of exogenous cyclic AMP: the division rhythm soon returned to its original phase. On the other hand, the permanent elevation of cyclic AMP levels in the presence of forskolin induced a rapid loss of cell division rhythmicity. These findings are consistent with the hypothesis that cyclic AMP acts downstream from the oscillator and that the cyclic AMP oscillation is an essential component of the signaling pathway for the control of the CDC by the circadian oscillator. The receptors for cyclic AMP in Euglena have been shown to be two cyclic AMP-dependent kinases (cPKA and cPKB). Pharmacological studies using cyclic AMP analogs suggested that cPKA mediates cyclic AMP effects during the subjective day, and cPKB during the subjective night.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 4 (6) ◽  
pp. 204-209 ◽  
Author(s):  
Wolfgang Schmid ◽  
Doris Nitsch ◽  
Michael Boshart ◽  
Günther Schütz

1981 ◽  
Vol 256 (20) ◽  
pp. 10628-10633 ◽  
Author(s):  
M. Knecht ◽  
A. Amsterdam ◽  
K. Catt

2021 ◽  
Vol 22 (10) ◽  
pp. 5328
Author(s):  
Miao Ma ◽  
Margaux Lustig ◽  
Michèle Salem ◽  
Dominique Mengin-Lecreulx ◽  
Gilles Phan ◽  
...  

One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.


Genes ◽  
2010 ◽  
Vol 1 (3) ◽  
pp. 335-348 ◽  
Author(s):  
Ban-Hock Toh ◽  
Yugang Tu ◽  
Zemin Cao ◽  
Mark E. Cooper ◽  
Zhonglin Chai

1992 ◽  
Vol 283 (1) ◽  
pp. 261-264 ◽  
Author(s):  
N Casals ◽  
N Roca ◽  
M Guerrero ◽  
G Gil-Gómez ◽  
J Ayté ◽  
...  

We have explored the role of mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase in regulating ketogenesis. We had previously cloned the cDNA for mitochondrial HMG-CoA synthase and have now studied the regulation in vivo of the expression of this gene in rat liver. The amount of processed mitochondrial HMG-CoA synthase mRNA is rapidly changed in response to cyclic AMP, insulin, dexamethasone and refeeding, and is greatly increased by starvation, fat feeding and diabetes. We conclude that one point of ketogenic control is exercised at the level of genetic expression of mitochondrial HMG-CoA synthase.


1981 ◽  
Vol 200 (3) ◽  
pp. 509-514 ◽  
Author(s):  
B Bréant ◽  
S Keppens ◽  
H De Wulf

Vasopressin and alpha-adrenergic agonists are known to be potent cyclic AMP-independent Ca2+-dependent activators of liver glycogen phosphorylase. When hepatocytes are pre-incubated with increasing concentrations of vasopressin or of the alpha-agonist phenylephrine, they become progressively unresponsive to a second addition of the respective agonist. The relative abilities of six vasopressin analogues and of five alpha-agonists to activate glycogen phosphorylase and to cause subsequent desensitization are highly correlated, indicating that the same vasopressin and alpha-adrenergic receptors are involved in both responses. About 5-times-higher peptide concentrations are needed to desensitize the cells than to activate their glycogen phosphorylase, whereas the concentrations of alpha-agonists required for the desensitization are only twice those needed for the activation of phosphorylase. The desensitization is not mediated by a perturbation in the agonist-receptor interaction. It is clearly heterologous, i.e. it is not agonist-specific, and must therefore involve a mechanism common to both series of agonists. The evidence for a role of Ca2+ movements or phosphatidylinositol turnover is briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document