SEDLOB and PATLOB: Two Numerical Tools for Modeling Climatically-Forced Sediment and Water Volume Transport in Large Ocean Basins

Author(s):  
B. J. Haupt ◽  
K. Stattegger ◽  
D. Seidov
2020 ◽  
Vol 8 (12) ◽  
pp. 979
Author(s):  
Wei Huang ◽  
Chunyan Li

In this paper, subtidal responses of Barataria Bay to an atmospheric cold front in 2014 and Hurricane Barry of 2019 are studied. The cold fronts had shorter influencing periods (1 to 3 days), while Hurricane Barry had a much longer influencing period (about 1 week). Wind direction usually changes from southern quadrants to northern quadrants before and after a cold front’s passage. For a hurricane making its landfall at the norther Gulf of Mexico coast, wind variation is dependent on the location relative to the location of landfall. Consequently, water level usually reaches a trough after the maximum cold front wind usually; while after the maximum wind during a hurricane, water level mostly has a surge, especially on the right-hand side of the hurricane. Water level variation induced by Hurricane Barry is about 3 times of that induced by a cold front event. Water volume flux also shows differences under these two weather types: the volume transport during Hurricane Barry was 4 times of that during a cold front. On the other hand, cold front events are much more frequent (30–40 times a year), and they lead to more frequent exchange between Barataria Bay and the coastal ocean.


2008 ◽  
Vol 35 (18) ◽  
Author(s):  
Akio Ishida ◽  
Yuji Kashino ◽  
Shigeki Hosoda ◽  
Kentaro Ando

2020 ◽  
Author(s):  
Eivind Hugaas Kolås ◽  
Zoe Koenig ◽  
Ilker Fer ◽  
Frank Nilsen ◽  
Marika Marnela

<p>The transport of warm Atlantic waters north of Svalbard is one of the major heat and salt sources to the Arctic Ocean. The circulation pathway and the associated heat transport influence the variability in the Arctic sea ice extent and the onset of freezing. We present observations obtained from research cruises and autonomous underwater glider missions in summer and fall 2018 to describe the hydrographic structure, volume transport rates and circulation patterns of the warm boundary current between 12E and 24E north of Svalbard.</p><p>A composite section is constructed along a representative, average bathymetry across the shelf break, using all available observations in order to obtain the hydrographic structure and the absolute geostrophic transport of the boundary current. The Atlantic water volume transport reaches a maximum of 3.0 ± 0.2 Sv in October, with an intraseasonal variability of 1 Sv. During summer and late fall, we observed Atlantic water flowing eastward (a counter current), in the outer part of the section away from the shelf break, in the Sofia Deep. The intensity of the Atlantic water counter current and the Atlantic water boundary current are very sensitive to the wind stress curl: we observed a near doubling of the volume transport in less than a week.</p><p>The composite section also reveals a bottom-intensified current flowing parallel to the boundary current, between the 1500 m and 2000 m isobaths. A composite of all historical data collected in the region, constructed identical to our observations, support the presence of the bottom intensified current.</p>


2020 ◽  
Vol 64 (4) ◽  
pp. 40407-1-40407-13 ◽  
Author(s):  
Ran Pang ◽  
He Huang ◽  
Tri Dev Acharya

Abstract Yongding River is one of the five major river systems in Beijing. It is located to the west of Beijing. It has influenced culture along its basin. The river supports both rural and urban areas. Furthermore, it influences economic development, water conservation, and the natural environment. However, during the past few decades, due to the combined effect of increasing population and economic activities, a series of changes have led to problems such as the reduction in water volume and the exposure of the riverbed. In this study, remote sensing images were used to derive land cover maps and compare spatiotemporal changes during the past 40 years. As a result, the following data were found: forest changed least; cropland area increased to a large extent; bareland area was reduced by a maximum of 63%; surface water area in the study area was lower from 1989 to 1999 because of the excessive use of water in human activities, but it increased by 92% from 2010 to 2018 as awareness about protecting the environment arose; there was a small increase in the built-up area, but this was more planned. These results reveal that water conservancy construction, agroforestry activities, and increasing urbanization have a great impact on the surrounding environment of the Yongding River (Beijing section). This study discusses in detail how the current situation can be attributed to of human activities, policies, economic development, and ecological conservation Furthermore, it suggests improvement by strengthening the governance of the riverbed and the riverside. These results and discussion can be a reference and provide decision support for the management of southwest Beijing or similar river basins in peri-urban areas.


2020 ◽  
pp. 102-109
Author(s):  
D.KH. DOMULLODZHANOV ◽  
◽  
R. RAHMATILLOEV

The article presents the results of the field studies and observations that carried out on the territory of the hilly, low-mountain and foothill agro landscapes of the Kyzylsu-yuzhnaya (Kyzylsu-Southern) River Basin of Tajikistan. Taking into account the high-altitude location of households and the amount of precipitation in the river basin, the annual volumes of water accumulated with the use of low-cost systems of collection and storage of precipitation have been clarified. The amount of water accumulated in the precipitation collection and storage systems has been established, the volume of water used for communal and domestic needs,the watering of livestock and the amount of water that can be used to irrigate crops in the have been determined. Possible areas of irrigation of household plots depending on the different availability of precipitation have been determined. It has been established that in wet years (with precipitation of about 10%) the amount of water collected using drip irrigation will be sufficient for irrigation of 0.13 hectares, and in dry years (with 90% of precipitation) it will be possible to irrigate only 0.03 ha of the household plot. On the basis of the basin, the total area of irrigation in wet years can be 4497 ha, and in dry years only 1087 ha. Taking into account the forecasts of population growth by 2030 and an increase in the number of households, the total area of irrigation of farmlands in wet years may reach 5703 hectares,and in dry years – 1379 hectares. Growing crops on household plots under irrigation contributes to a significant increase in land productivity and increases the efficiency of water use of the Kyzylsu-yuzhnaya basin.


Sign in / Sign up

Export Citation Format

Share Document