Metrology in Chemistry and Traceability of Analytical Measurement Results

Author(s):  
Ioannis Papadakis
Author(s):  
D. Brynn Hibbert

One of the great revolutions in metrology in chemistry has been the understanding of the need to quote an appropriate measurement uncertainty with a result. For some time, a standard deviation determined under not particularly well-defined conditions was considered a reasonable adjunct to a measurement result, and multiplying by the appropriate Student’s t value gave the 95% confidence interval. But knowing that in a long run of experiments repeated under identical conditions 95% of the 95% confidence intervals would include the population mean did not answer the fundamental question of how good the result was. This became evident as international trade burgeoned and more and more discrepancies in measurement results and disagreements between trading partners came to light. To determine if two measurements of ostensibly the same measurand on the same material give results that are equivalent, they must be traceable to the same metrological reference and have stated measurement uncertainties. How to achieve that comparability is the subject of this chapter and the next. When making a chemical measurement by taking a certain amount of the test material, working it up in a form that can be analyzed, calibrating the instrument, and performing the measurement, analysts understand that there will be some doubt about the result. Contributions to uncertainty derive from each step in the analysis, and even from the basis on which the analysis is carried out. An uncertainty budget documents the history of the assessment of the measurement uncertainty of a result, and it is the outcome of the process of identifying and quantifying uncertainty. Although the client may only receive the fruits of this process as (value ± expanded uncertainty), accreditation to ISO/IEC 17025 requires the laboratory to document how the uncertainty is estimated. Estimates of plutonium sources highlight the importance of uncertainty. The International Atomic Energy Agency (IAEA) estimates there are about 700 tonnes of plutonium in the world. The uncertainty of measurement of plutonium is of the order of 0.1%, so even if all the plutonium were in one place, when analyzed the uncertainty would be 700 kg (1000 kg = 1 tonne). Seven kilograms of plutonium makes a reasonable bomb.


Author(s):  
Mojca Milavec ◽  
Megan H. Cleveland ◽  
Young-Kyung Bae ◽  
Robert I. Wielgosz ◽  
Maxim Vonsky ◽  
...  

Abstract Nucleic acid analysis is used in many areas of life sciences such as medicine, food safety, and environmental monitoring. Accurate, reliable measurements of nucleic acids are crucial for maximum impact, yet users are often unaware of the global metrological infrastructure that exists to support these measurements. In this work, we describe international efforts to improve nucleic acid analysis, with a focus on the Nucleic Acid Analysis Working Group (NAWG) of the Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology (CCQM). The NAWG is an international group dedicated to improving the global comparability of nucleic acid measurements; its primary focus is to support the development and maintenance of measurement capabilities and the dissemination of measurement services from its members: the National Metrology Institutes (NMIs) and Designated Institutes (DIs). These NMIs and DIs provide DNA and RNA measurement services developed in response to the needs of their stakeholders. The NAWG members have conducted cutting edge work over the last 20 years, demonstrating the ability to support the reliability, comparability, and traceability of nucleic acid measurement results in a variety of sectors.


Author(s):  
Antonio Possolo ◽  
Amanda Koepke ◽  
David Newton ◽  
Michael R. Winchester

This contribution describes a Decision Tree intended to guide the selection of statistical models and data reduction procedures in key comparisons (KCs). The Decision Tree addresses a specific need of the Inorganic Analysis Working Group (IAWG) of the Consultative Committee (CC) for Amount of Substance, Metrology in Chemistry and Biology (CCQM), of the International Committee for Weights and Measures (CIPM), and it is likely to address similar needs of other working groups and consultative committees. Because the portfolio of KCs previously organized by the CCQM-IAWG affords a full range of opportunities to demonstrate the capabilities of the Decision Tree, the majority of the illustrative examples of application of the Decision Tree are from this working group. However, the Decision Tree is widely applicable in other areas of metrology, as illustrated in examples of application to measurements of radionuclides and of the efficiency of a thermistor power sensor. The Decision Tree is intended for use after choices will have been made about the measurement results that qualify for inclusion in the calculation of the key comparison reference value (KCRV), and about the measurement results for which degrees of equivalence should be produced. Both these choices should be based on substantive considerations, not on purely statistical criteria. However, the Decision Tree does not require that the measurement results selected for either purpose be mutually consistent. The Decision Tree should be used as a guide, not as the sole and autonomous determinant of the model that should be selected for the measurement results obtained in a KC, or of the procedure that should be employed to reduce these results. The scientists running the KCs ultimately have the freedom and responsibility to make the corresponding choices that they deem most appropriate and that best fit the purpose of each KC. The Decision Tree involves three statistical tests, and comprises five terminal leaves, which correspond to as many alternative ways in which the KCRV, its associated uncertainty, and the degrees of equivalence (DoEs) may be computed. This contribution does not purport to suggest that any of the KCRVs, associated uncertainties, or DoEs, presented in previously approved final reports issued by working groups of the CCs should be modified. Neither do the alternative results question existing, demonstrated calibration and measurement capabilities (CMCs), nor do they support any new CMCs.


2011 ◽  
Vol 42 (S 01) ◽  
Author(s):  
D Tibussek ◽  
F Distelmaier ◽  
S Kummer ◽  
E Mayatepek

2020 ◽  
pp. 3-8
Author(s):  
L.F. Vitushkin ◽  
F.F. Karpeshin ◽  
E.P. Krivtsov ◽  
P.P. Krolitsky ◽  
V.V. Nalivaev ◽  
...  

The State special primary acceleration measurement standard for gravimetry (GET 190-2019), its composition, principle of operation and basic metrological characteristics are presented. This standard is on the upper level of reference for free-fall acceleration measurements. Its accuracy and reliability were improved as a result of optimisation of the adjustment procedures for measurement systems and its integration within the upgraded systems, units and modern hardware components. A special attention was given to adjusting the corrections applied to measurement results with respect to procedural, physical and technical limitations. The used investigation methods made it possibled to confirm the measurement range of GET 190-2019 and to determine the contributions of main sources of errors and the total value of these errors. The measurement characteristics and GET 90-2019 were confirmed by the results obtained from measurements of the absolute value of the free fall acceleration at the gravimetrical site “Lomonosov-1” and by their collation with the data of different dates obtained from measurements by high-precision foreign and domestic gravimeters. Topicality of such measurements ensues from the requirements to handle the applied problems that need data on parameters of the Earth gravitational field, to be adequately faced. Geophysics and navigation are the main fields of application for high-precision measurements in this field.


2020 ◽  
pp. 66-72
Author(s):  
Irina A. Piterskikh ◽  
Svetlana V. Vikhrova ◽  
Nina G. Kovaleva ◽  
Tatyana O. Barynskaya

Certified reference materials (CRM) composed of propyl (11383-2019) and isopropyl (11384-2019) alcohols solutions were created for validation of measurement procedures and control of measurement errors of measurement results of mass concentrations of toxic substances (alcohol) in biological objects (urine, blood) and water. Two ways of establishing the value of the certified characteristic – mass consentration of propanol-1 or propanol-2 have been studied. The results obtained by the preparation procedure and comparison with the standard are the same within the margin of error.


Sign in / Sign up

Export Citation Format

Share Document